Jingsheng Wang , Jun Wang , Fengyi Wang , Shuang Yang , Chaoqun Wu , Xi Chen , Kaiwen Chen , Pingan Song , Hao Wang , Siqi Huo
{"title":"液态磷基双咪唑化合物作为潜伏固化剂,用于提高单组分环氧树脂的热性能、机械性能和阻燃性能","authors":"Jingsheng Wang , Jun Wang , Fengyi Wang , Shuang Yang , Chaoqun Wu , Xi Chen , Kaiwen Chen , Pingan Song , Hao Wang , Siqi Huo","doi":"10.1016/j.polymdegradstab.2024.111066","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating need for advanced, fire-resistant, single-component epoxy resin (EP) is fueled by its practicality and economic benefits, highlighting the necessity for the development of multifunctional flame-retardant latent curing agents. Herein, two liquid phosphorus-containing bis-imidazole compounds, PPDM and DPCMI, were synthesized as latent curing agents for EP, demonstrating multiple effects in improving latency, thermal stability, mechanical properties, and fire safety. EP/PPDM and EP/DPCMI showcased superior storage stability and rapid curing at moderate temperatures, with EP/PPDM standing out for its long shelf life of 7 d and being gelled within 18 min at 100 °C. The resulting thermosets presented increased glass transition temperatures (189.5 and 178.9 °C), due to the enhanced crosslinking densities. The presence of bis-imidazole groups in PPDM and DPCMI enabled EPs to form denser crosslinked networks, leading to improved mechanical strength and toughness. The limiting oxygen index (LOI) values of EP/PPDM and EP/DPCMI reached 29.5% and 29.0%, respectively. Compared to the control EP, EP/PPDM and EP/DPCMI showed 23.1% and 18.8% reductions in total heat release and 22.0% and 23.11% decreases in total smoke production. These results confirm the enhanced flame retardancy and smoke suppression of EP/PPDM and EP/DPCMI because of introducing phosphorus-containing groups. Even though the curing time was halved to 2.5 hours, EP/PPDM systems maintained satisfactory overall performances. Therefore, this work offers a scalable strategy for the fabrication of single-component EP systems combining rapid curing, satisfactory flame retardancy, and enhanced thermal stability and mechanical properties, aligning with the needs of industrial applications.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111066"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid phosphorus-based bis-imidazole compounds as latent curing agents for enhancing thermal, mechanical, and flame-retardant performances of single-component epoxy resins\",\"authors\":\"Jingsheng Wang , Jun Wang , Fengyi Wang , Shuang Yang , Chaoqun Wu , Xi Chen , Kaiwen Chen , Pingan Song , Hao Wang , Siqi Huo\",\"doi\":\"10.1016/j.polymdegradstab.2024.111066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating need for advanced, fire-resistant, single-component epoxy resin (EP) is fueled by its practicality and economic benefits, highlighting the necessity for the development of multifunctional flame-retardant latent curing agents. Herein, two liquid phosphorus-containing bis-imidazole compounds, PPDM and DPCMI, were synthesized as latent curing agents for EP, demonstrating multiple effects in improving latency, thermal stability, mechanical properties, and fire safety. EP/PPDM and EP/DPCMI showcased superior storage stability and rapid curing at moderate temperatures, with EP/PPDM standing out for its long shelf life of 7 d and being gelled within 18 min at 100 °C. The resulting thermosets presented increased glass transition temperatures (189.5 and 178.9 °C), due to the enhanced crosslinking densities. The presence of bis-imidazole groups in PPDM and DPCMI enabled EPs to form denser crosslinked networks, leading to improved mechanical strength and toughness. The limiting oxygen index (LOI) values of EP/PPDM and EP/DPCMI reached 29.5% and 29.0%, respectively. Compared to the control EP, EP/PPDM and EP/DPCMI showed 23.1% and 18.8% reductions in total heat release and 22.0% and 23.11% decreases in total smoke production. These results confirm the enhanced flame retardancy and smoke suppression of EP/PPDM and EP/DPCMI because of introducing phosphorus-containing groups. Even though the curing time was halved to 2.5 hours, EP/PPDM systems maintained satisfactory overall performances. Therefore, this work offers a scalable strategy for the fabrication of single-component EP systems combining rapid curing, satisfactory flame retardancy, and enhanced thermal stability and mechanical properties, aligning with the needs of industrial applications.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111066\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004099\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004099","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Liquid phosphorus-based bis-imidazole compounds as latent curing agents for enhancing thermal, mechanical, and flame-retardant performances of single-component epoxy resins
The escalating need for advanced, fire-resistant, single-component epoxy resin (EP) is fueled by its practicality and economic benefits, highlighting the necessity for the development of multifunctional flame-retardant latent curing agents. Herein, two liquid phosphorus-containing bis-imidazole compounds, PPDM and DPCMI, were synthesized as latent curing agents for EP, demonstrating multiple effects in improving latency, thermal stability, mechanical properties, and fire safety. EP/PPDM and EP/DPCMI showcased superior storage stability and rapid curing at moderate temperatures, with EP/PPDM standing out for its long shelf life of 7 d and being gelled within 18 min at 100 °C. The resulting thermosets presented increased glass transition temperatures (189.5 and 178.9 °C), due to the enhanced crosslinking densities. The presence of bis-imidazole groups in PPDM and DPCMI enabled EPs to form denser crosslinked networks, leading to improved mechanical strength and toughness. The limiting oxygen index (LOI) values of EP/PPDM and EP/DPCMI reached 29.5% and 29.0%, respectively. Compared to the control EP, EP/PPDM and EP/DPCMI showed 23.1% and 18.8% reductions in total heat release and 22.0% and 23.11% decreases in total smoke production. These results confirm the enhanced flame retardancy and smoke suppression of EP/PPDM and EP/DPCMI because of introducing phosphorus-containing groups. Even though the curing time was halved to 2.5 hours, EP/PPDM systems maintained satisfactory overall performances. Therefore, this work offers a scalable strategy for the fabrication of single-component EP systems combining rapid curing, satisfactory flame retardancy, and enhanced thermal stability and mechanical properties, aligning with the needs of industrial applications.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.