利用深度卷积神经网络去噪降低儿科计算机断层扫描(CT)的辐射剂量

IF 2.1 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Clinical radiology Pub Date : 2024-09-21 DOI:10.1016/j.crad.2024.09.011
K.K. Horst , Z. Zhou , N.C. Hull , P.G. Thacker , B.A. Kassmeyer , M.P. Johnson , N. Demirel , A.D. Missert , K. Weger , L. Yu
{"title":"利用深度卷积神经网络去噪降低儿科计算机断层扫描(CT)的辐射剂量","authors":"K.K. Horst ,&nbsp;Z. Zhou ,&nbsp;N.C. Hull ,&nbsp;P.G. Thacker ,&nbsp;B.A. Kassmeyer ,&nbsp;M.P. Johnson ,&nbsp;N. Demirel ,&nbsp;A.D. Missert ,&nbsp;K. Weger ,&nbsp;L. Yu","doi":"10.1016/j.crad.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>We evaluated the quality of noncontrast chest computed tomography (CT) for pediatric patients at two dose levels with and without denoising using a deep convolutional neural network (CNN).</div></div><div><h3>Materials and methods</h3><div>Forty children underwent noncontrast chest CTs for “chronic cough” using a routine dose (RD) protocol. Images were reconstructed using iterative reconstruction (IR). A validated noise insertion method was used to simulate 20% dose (TD) data for each case. A deep CNN model was trained and validated on 10 cases and then applied to the remaining 30 cases. Three certificate of qualification (CAQ)-certified pediatric radiologists evaluated 30 cases under 4 conditions: (1) RD + IR; (2) RD + CNN; (3) TD + IR; and (4) TD + CNN. Likert scales were used to score subjective image quality (1–5, 5 = excellent) and subjective noise artifact (1–4, 4 = no noise). Images were reviewed for specific findings.</div></div><div><h3>Results</h3><div>For the 30 patients evaluated (14 female, mean age: 10.8 years, range: 0.17–17), the mean effective dose was 0.46 ± 0.21 mSv for the original RD exam, with an effective dose of 0.09 mSv for the TD exam. Both RD + CNN (3.6 ± 1.1, p &lt; 0.001) and TD + CNN (3.4 ± 0.9, <em>p</em> = 0.023) had higher image quality than RD + IR (3.1 ± 0.9). Both RD + CNN (3.2 ± 0.9, p-value = &lt;0.001) and TD + CNN (2.9 ± 0.6, p-value = 0.001) showed significantly lower subjective noise artifact scores than RD + IR (2.7 ± 0.7). There was excellent intrareader (RD + IR-RD + CNN: mean κ = 0.96, RD + IR-TD + CNN = 0.96, RD + IR-TD + IR = 0.98) and moderate inter-reader reliability (RD + IR: mean κ = 0.55, RD + CNN = 0.50, TD + CNN = 0.54, TD + IR = 0.57) on all 4 image reconstructions.</div></div><div><h3>Conclusion</h3><div>CNN denoising outperforms IR as a means of radiation dose reduction in pediatric CT.</div></div>","PeriodicalId":10695,"journal":{"name":"Clinical radiology","volume":"80 ","pages":"Article 106705"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation dose reduction in pediatric computed tomography (CT) using deep convolutional neural network denoising\",\"authors\":\"K.K. Horst ,&nbsp;Z. Zhou ,&nbsp;N.C. Hull ,&nbsp;P.G. Thacker ,&nbsp;B.A. Kassmeyer ,&nbsp;M.P. Johnson ,&nbsp;N. Demirel ,&nbsp;A.D. Missert ,&nbsp;K. Weger ,&nbsp;L. Yu\",\"doi\":\"10.1016/j.crad.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aim</h3><div>We evaluated the quality of noncontrast chest computed tomography (CT) for pediatric patients at two dose levels with and without denoising using a deep convolutional neural network (CNN).</div></div><div><h3>Materials and methods</h3><div>Forty children underwent noncontrast chest CTs for “chronic cough” using a routine dose (RD) protocol. Images were reconstructed using iterative reconstruction (IR). A validated noise insertion method was used to simulate 20% dose (TD) data for each case. A deep CNN model was trained and validated on 10 cases and then applied to the remaining 30 cases. Three certificate of qualification (CAQ)-certified pediatric radiologists evaluated 30 cases under 4 conditions: (1) RD + IR; (2) RD + CNN; (3) TD + IR; and (4) TD + CNN. Likert scales were used to score subjective image quality (1–5, 5 = excellent) and subjective noise artifact (1–4, 4 = no noise). Images were reviewed for specific findings.</div></div><div><h3>Results</h3><div>For the 30 patients evaluated (14 female, mean age: 10.8 years, range: 0.17–17), the mean effective dose was 0.46 ± 0.21 mSv for the original RD exam, with an effective dose of 0.09 mSv for the TD exam. Both RD + CNN (3.6 ± 1.1, p &lt; 0.001) and TD + CNN (3.4 ± 0.9, <em>p</em> = 0.023) had higher image quality than RD + IR (3.1 ± 0.9). Both RD + CNN (3.2 ± 0.9, p-value = &lt;0.001) and TD + CNN (2.9 ± 0.6, p-value = 0.001) showed significantly lower subjective noise artifact scores than RD + IR (2.7 ± 0.7). There was excellent intrareader (RD + IR-RD + CNN: mean κ = 0.96, RD + IR-TD + CNN = 0.96, RD + IR-TD + IR = 0.98) and moderate inter-reader reliability (RD + IR: mean κ = 0.55, RD + CNN = 0.50, TD + CNN = 0.54, TD + IR = 0.57) on all 4 image reconstructions.</div></div><div><h3>Conclusion</h3><div>CNN denoising outperforms IR as a means of radiation dose reduction in pediatric CT.</div></div>\",\"PeriodicalId\":10695,\"journal\":{\"name\":\"Clinical radiology\",\"volume\":\"80 \",\"pages\":\"Article 106705\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009926024005166\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009926024005166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

材料与方法40 名儿童因 "慢性咳嗽 "接受了非对比胸部 CT 检查,检查采用常规剂量 (RD) 方案。使用迭代重建(IR)对图像进行重建。使用经过验证的噪声插入法模拟每个病例的 20% 剂量 (TD) 数据。在 10 个病例上训练并验证了深度 CNN 模型,然后将其应用于其余 30 个病例。三位获得资格证书(CAQ)认证的儿科放射医师在 4 种条件下对 30 个病例进行了评估:(1) RD + IR;(2) RD + CNN;(3) TD + IR;(4) TD + CNN。采用李克特量表对主观图像质量(1-5,5 = 优秀)和主观噪声伪影(1-4,4 = 无噪声)进行评分。结果在接受评估的 30 名患者中(14 名女性,平均年龄:10.8 岁,范围:0.17-17 岁),原始 RD 检查的平均有效剂量为 0.46 ± 0.21 mSv,TD 检查的有效剂量为 0.09 mSv。RD + CNN(3.6 ± 1.1,p < 0.001)和 TD + CNN(3.4 ± 0.9,p = 0.023)的图像质量均高于 RD + IR(3.1 ± 0.9)。RD + CNN(3.2 ± 0.9,p 值 = 0.001)和 TD + CNN(2.9 ± 0.6,p 值 = 0.001)的主观噪声伪影评分均显著低于 RD + IR(2.7 ± 0.7)。阅读器内部可靠性极佳(RD + IR-RD + CNN:平均 κ = 0.96,RD + IR-TD + CNN = 0.96,RD + IR-TD + IR = 0.98),阅读器之间可靠性适中(RD + IR:平均 κ = 0.结论在减少儿科 CT 辐射剂量方面,CNN 去噪优于 IR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation dose reduction in pediatric computed tomography (CT) using deep convolutional neural network denoising

Aim

We evaluated the quality of noncontrast chest computed tomography (CT) for pediatric patients at two dose levels with and without denoising using a deep convolutional neural network (CNN).

Materials and methods

Forty children underwent noncontrast chest CTs for “chronic cough” using a routine dose (RD) protocol. Images were reconstructed using iterative reconstruction (IR). A validated noise insertion method was used to simulate 20% dose (TD) data for each case. A deep CNN model was trained and validated on 10 cases and then applied to the remaining 30 cases. Three certificate of qualification (CAQ)-certified pediatric radiologists evaluated 30 cases under 4 conditions: (1) RD + IR; (2) RD + CNN; (3) TD + IR; and (4) TD + CNN. Likert scales were used to score subjective image quality (1–5, 5 = excellent) and subjective noise artifact (1–4, 4 = no noise). Images were reviewed for specific findings.

Results

For the 30 patients evaluated (14 female, mean age: 10.8 years, range: 0.17–17), the mean effective dose was 0.46 ± 0.21 mSv for the original RD exam, with an effective dose of 0.09 mSv for the TD exam. Both RD + CNN (3.6 ± 1.1, p < 0.001) and TD + CNN (3.4 ± 0.9, p = 0.023) had higher image quality than RD + IR (3.1 ± 0.9). Both RD + CNN (3.2 ± 0.9, p-value = <0.001) and TD + CNN (2.9 ± 0.6, p-value = 0.001) showed significantly lower subjective noise artifact scores than RD + IR (2.7 ± 0.7). There was excellent intrareader (RD + IR-RD + CNN: mean κ = 0.96, RD + IR-TD + CNN = 0.96, RD + IR-TD + IR = 0.98) and moderate inter-reader reliability (RD + IR: mean κ = 0.55, RD + CNN = 0.50, TD + CNN = 0.54, TD + IR = 0.57) on all 4 image reconstructions.

Conclusion

CNN denoising outperforms IR as a means of radiation dose reduction in pediatric CT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical radiology
Clinical radiology 医学-核医学
CiteScore
4.70
自引率
3.80%
发文量
528
审稿时长
76 days
期刊介绍: Clinical Radiology is published by Elsevier on behalf of The Royal College of Radiologists. Clinical Radiology is an International Journal bringing you original research, editorials and review articles on all aspects of diagnostic imaging, including: • Computed tomography • Magnetic resonance imaging • Ultrasonography • Digital radiology • Interventional radiology • Radiography • Nuclear medicine Papers on radiological protection, quality assurance, audit in radiology and matters relating to radiological training and education are also included. In addition, each issue contains correspondence, book reviews and notices of forthcoming events.
期刊最新文献
Corrigendum to "CT histogram analysis to distinguish between acute intracerebral hemorrhage and cavernous hemangioma" [Clin Radiol 79 (11) (2024) e872-e879]. Re: Utility of zero echo time (ZTE) sequence for assessing bony lesions of skull base and calvarium. Measurement of lumbar vertebral body attenuation at PET-CT is a reliable method of diagnosing osteoporosis Safety of CT-guided percutaneous cryoablation in patients treated for clinical T1 renal cell carcinoma with the need for pre-procedural ureteral stenting: an international cohort study Correlation of semi-quantitative analyses and visual scores in pulmonary perfusion SPECT/CT imaging with pulmonary function test parameters in patients with interstitial lung diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1