在猎物与食肉动物混杂的环境中提高最大持续产量

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2024-11-06 DOI:10.1016/j.ecocom.2024.101107
Bilel Elbetch , Ali Moussaoui
{"title":"在猎物与食肉动物混杂的环境中提高最大持续产量","authors":"Bilel Elbetch ,&nbsp;Ali Moussaoui","doi":"10.1016/j.ecocom.2024.101107","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate a prey–predator community of fish coexisting in a multi-patches model, where different fishing patches are interconnected through migration terms. Only the predator is caught, while the prey grows logistically on each patch. The main objective of our research is to compare the maximum sustainable yield achieved in two contrasting scenarios: unconnected patches and connected patches with rapid stock movements. We show that the total maximum sustainable yield for the connected patches can be greater than the sum of the maximum sustainable yield on each isolated patch. The analysis of the model allows us to establish the conditions under which one of the two cases is more favorable from the viewpoint of yield. As a result, we provide a complete classification for all possible cases. This valuable information can be used to assist decision-makers in selecting the best management strategy for a particular fishery.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"60 ","pages":"Article 101107"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing maximum sustainable yield in a patchy prey–predator environment\",\"authors\":\"Bilel Elbetch ,&nbsp;Ali Moussaoui\",\"doi\":\"10.1016/j.ecocom.2024.101107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate a prey–predator community of fish coexisting in a multi-patches model, where different fishing patches are interconnected through migration terms. Only the predator is caught, while the prey grows logistically on each patch. The main objective of our research is to compare the maximum sustainable yield achieved in two contrasting scenarios: unconnected patches and connected patches with rapid stock movements. We show that the total maximum sustainable yield for the connected patches can be greater than the sum of the maximum sustainable yield on each isolated patch. The analysis of the model allows us to establish the conditions under which one of the two cases is more favorable from the viewpoint of yield. As a result, we provide a complete classification for all possible cases. This valuable information can be used to assist decision-makers in selecting the best management strategy for a particular fishery.</div></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"60 \",\"pages\":\"Article 101107\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X24000357\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000357","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个在多斑块模型中共存的鱼类捕食者群落,在这个模型中,不同的捕鱼斑块通过洄游条件相互连接。只有捕食者会被捕获,而猎物则在每个渔场上顺理成章地生长。我们研究的主要目的是比较在两种截然不同的情况下实现的最大持续产量:未连接的斑块和种群快速移动的连接斑块。我们的研究表明,连接斑块的总最大持续产量可能大于每个孤立斑块的最大持续产量之和。通过对模型的分析,我们可以确定在哪些条件下,从产量的角度来看这两种情况中的哪一种更有利。因此,我们提供了所有可能情况的完整分类。这些宝贵的信息可用于帮助决策者为特定渔业选择最佳管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing maximum sustainable yield in a patchy prey–predator environment
In this paper, we investigate a prey–predator community of fish coexisting in a multi-patches model, where different fishing patches are interconnected through migration terms. Only the predator is caught, while the prey grows logistically on each patch. The main objective of our research is to compare the maximum sustainable yield achieved in two contrasting scenarios: unconnected patches and connected patches with rapid stock movements. We show that the total maximum sustainable yield for the connected patches can be greater than the sum of the maximum sustainable yield on each isolated patch. The analysis of the model allows us to establish the conditions under which one of the two cases is more favorable from the viewpoint of yield. As a result, we provide a complete classification for all possible cases. This valuable information can be used to assist decision-makers in selecting the best management strategy for a particular fishery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1