基于螺[芴-9,9′-氧杂蒽]孔传输分子的透明可编程发光标签

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-11-07 DOI:10.1021/acs.jpcc.4c05882
Daqing Zhang, Xin Luo, Lucía Labrador-Páez, Jiantong Li, Qiliang Fu, Haichun Liu, Jianhua Su, Ilya Sychugov, Bo Xu
{"title":"基于螺[芴-9,9′-氧杂蒽]孔传输分子的透明可编程发光标签","authors":"Daqing Zhang, Xin Luo, Lucía Labrador-Páez, Jiantong Li, Qiliang Fu, Haichun Liu, Jianhua Su, Ilya Sychugov, Bo Xu","doi":"10.1021/acs.jpcc.4c05882","DOIUrl":null,"url":null,"abstract":"Pure organic ultralong room temperature phosphorescent (URTP) materials have garnered significant attention for applications in luminescent materials, biosensing, and information encryption. These materials offer advantages over heavy metal phosphorescent materials, such as lower cost, reduced biological toxicity, and minimal environmental impact. Herein, for the first time, we demonstrate a series of organic RTP materials based on spiro[fluorene-9,9′-xanthene] (SFX) hole-transporting molecules, specifically <b>X59</b> and <b>X55</b>. Our research presents that incorporating more rigid SFX units significantly extends RTP lifetime and enhances photoluminescence quantum yield (PLQY). The large steric hindrance of the rigid SFX structures suppresses nonradiative molecular motions, thereby prolonging phosphorescence emission. Compared to the baseline molecule <b>X1</b>, experimental results show that molecule <b>X59</b> extends the phosphorescence lifetime by 230 ms, while <b>X55</b> achieves an extension of 260 ms. Furthermore, we highlight the potential of this series of RTP molecules for use in transparent, programmable luminescent tags. Our work not only expands the molecular types of organic RTP materials but also provides innovative strategies for designing long-lived, high-quantum-yield RTP molecules. We envision that this will advance the smart device field of organic phosphorescent materials and their practical applications, such as intelligent labels, tags, and optical sensors.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"3 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent Programmable Luminescent Tags Enabled by Spiro[fluorene-9,9′-xanthene]-Based Hole-Transporting Molecules\",\"authors\":\"Daqing Zhang, Xin Luo, Lucía Labrador-Páez, Jiantong Li, Qiliang Fu, Haichun Liu, Jianhua Su, Ilya Sychugov, Bo Xu\",\"doi\":\"10.1021/acs.jpcc.4c05882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pure organic ultralong room temperature phosphorescent (URTP) materials have garnered significant attention for applications in luminescent materials, biosensing, and information encryption. These materials offer advantages over heavy metal phosphorescent materials, such as lower cost, reduced biological toxicity, and minimal environmental impact. Herein, for the first time, we demonstrate a series of organic RTP materials based on spiro[fluorene-9,9′-xanthene] (SFX) hole-transporting molecules, specifically <b>X59</b> and <b>X55</b>. Our research presents that incorporating more rigid SFX units significantly extends RTP lifetime and enhances photoluminescence quantum yield (PLQY). The large steric hindrance of the rigid SFX structures suppresses nonradiative molecular motions, thereby prolonging phosphorescence emission. Compared to the baseline molecule <b>X1</b>, experimental results show that molecule <b>X59</b> extends the phosphorescence lifetime by 230 ms, while <b>X55</b> achieves an extension of 260 ms. Furthermore, we highlight the potential of this series of RTP molecules for use in transparent, programmable luminescent tags. Our work not only expands the molecular types of organic RTP materials but also provides innovative strategies for designing long-lived, high-quantum-yield RTP molecules. We envision that this will advance the smart device field of organic phosphorescent materials and their practical applications, such as intelligent labels, tags, and optical sensors.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c05882\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05882","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纯有机超长室温磷光材料(URTP)在发光材料、生物传感和信息加密领域的应用备受关注。与重金属磷光材料相比,这些材料具有成本低、生物毒性小、对环境影响小等优点。在此,我们首次展示了一系列基于螺[芴-9,9′-氧杂蒽](SFX)空穴传输分子(特别是 X59 和 X55)的有机 RTP 材料。我们的研究表明,加入刚性更强的 SFX 单元可显著延长 RTP 的寿命并提高光致发光量子产率(PLQY)。刚性 SFX 结构的巨大立体阻碍抑制了非辐射分子运动,从而延长了磷光发射时间。实验结果表明,与基线分子 X1 相比,分子 X59 的磷光寿命延长了 230 毫秒,而 X55 则延长了 260 毫秒。此外,我们还强调了这一系列 RTP 分子用于透明、可编程发光标签的潜力。我们的工作不仅拓展了有机 RTP 材料的分子类型,还为设计长寿命、高量子产率的 RTP 分子提供了创新策略。我们设想这将推动有机磷光材料的智能设备领域及其实际应用,如智能标签、标记和光学传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transparent Programmable Luminescent Tags Enabled by Spiro[fluorene-9,9′-xanthene]-Based Hole-Transporting Molecules
Pure organic ultralong room temperature phosphorescent (URTP) materials have garnered significant attention for applications in luminescent materials, biosensing, and information encryption. These materials offer advantages over heavy metal phosphorescent materials, such as lower cost, reduced biological toxicity, and minimal environmental impact. Herein, for the first time, we demonstrate a series of organic RTP materials based on spiro[fluorene-9,9′-xanthene] (SFX) hole-transporting molecules, specifically X59 and X55. Our research presents that incorporating more rigid SFX units significantly extends RTP lifetime and enhances photoluminescence quantum yield (PLQY). The large steric hindrance of the rigid SFX structures suppresses nonradiative molecular motions, thereby prolonging phosphorescence emission. Compared to the baseline molecule X1, experimental results show that molecule X59 extends the phosphorescence lifetime by 230 ms, while X55 achieves an extension of 260 ms. Furthermore, we highlight the potential of this series of RTP molecules for use in transparent, programmable luminescent tags. Our work not only expands the molecular types of organic RTP materials but also provides innovative strategies for designing long-lived, high-quantum-yield RTP molecules. We envision that this will advance the smart device field of organic phosphorescent materials and their practical applications, such as intelligent labels, tags, and optical sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Influence of the Annealing Temperature on the Structural and Electrical Properties of SiOx(Si)&FeyOz(Fe) Films CatFlow: An Automated Workflow for Training Machine Learning Potentials to Compute Free Energies in Dynamic Catalysis Characterization of an Unexpected μ3 Adsorption of Molecular Oxygen on Ag(100) with Low-Temperature STM Interplay of Product Selectivity and Isolated Ru-Oxo Sites in the Solvent-Free Oxidization of Benzyl Alcohol Designing a Third Component for Ternary Organic Solar Cells by Tailoring the Acceptor Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1