利用振荡器漂移对 WiFi 设备进行无线电频率指纹识别

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-11-01 DOI:10.1109/TIM.2024.3485452
Chaozheng Xue;Tao Li;Yongzhao Li;Yuhan Ruan;Rui Zhang;Octavia A. Dobre
{"title":"利用振荡器漂移对 WiFi 设备进行无线电频率指纹识别","authors":"Chaozheng Xue;Tao Li;Yongzhao Li;Yuhan Ruan;Rui Zhang;Octavia A. Dobre","doi":"10.1109/TIM.2024.3485452","DOIUrl":null,"url":null,"abstract":"Radio frequency fingerprint (RFF) identification is a promising technique that exploits hardware impairment-induced features to achieve specific device identification. Among RFF features, carrier frequency offset (CFO) as a hotspot feature has received widespread attention. Since CFO is time-variant, existing research suggests compensating for its drift; however, this article emphasizes using the drift of CFO. Correspondingly, a novel RFF feature, named cyclic similarity (cyc-similarity), is proposed to depict the oscillator drift. Simply combining the cyc-similarity feature with a K-nearest neighbor (KNN) classifier, the system can achieve superior temporal and receiver generalization performance. On a public dataset of WiFi devices, the proposed method outperforms the existing methods.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-4"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Frequency Fingerprinting for WiFi Devices Using Oscillator Drifts\",\"authors\":\"Chaozheng Xue;Tao Li;Yongzhao Li;Yuhan Ruan;Rui Zhang;Octavia A. Dobre\",\"doi\":\"10.1109/TIM.2024.3485452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency fingerprint (RFF) identification is a promising technique that exploits hardware impairment-induced features to achieve specific device identification. Among RFF features, carrier frequency offset (CFO) as a hotspot feature has received widespread attention. Since CFO is time-variant, existing research suggests compensating for its drift; however, this article emphasizes using the drift of CFO. Correspondingly, a novel RFF feature, named cyclic similarity (cyc-similarity), is proposed to depict the oscillator drift. Simply combining the cyc-similarity feature with a K-nearest neighbor (KNN) classifier, the system can achieve superior temporal and receiver generalization performance. On a public dataset of WiFi devices, the proposed method outperforms the existing methods.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-4\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740330/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10740330/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

射频指纹(RFF)识别是一种很有前途的技术,它利用硬件损伤引起的特征来实现特定设备的识别。在射频指纹特征中,载波频率偏移(CFO)作为一种热点特征受到广泛关注。由于载波频率偏移是时变的,现有研究建议对其漂移进行补偿;但本文强调利用载波频率偏移的漂移。因此,本文提出了一种名为 "循环相似性(cyc-similarity)"的新型 RFF 特征来描述振荡器漂移。只需将循环相似性特征与 K 近邻(KNN)分类器相结合,系统就能实现卓越的时间和接收器泛化性能。在一个公开的 WiFi 设备数据集上,所提出的方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radio Frequency Fingerprinting for WiFi Devices Using Oscillator Drifts
Radio frequency fingerprint (RFF) identification is a promising technique that exploits hardware impairment-induced features to achieve specific device identification. Among RFF features, carrier frequency offset (CFO) as a hotspot feature has received widespread attention. Since CFO is time-variant, existing research suggests compensating for its drift; however, this article emphasizes using the drift of CFO. Correspondingly, a novel RFF feature, named cyclic similarity (cyc-similarity), is proposed to depict the oscillator drift. Simply combining the cyc-similarity feature with a K-nearest neighbor (KNN) classifier, the system can achieve superior temporal and receiver generalization performance. On a public dataset of WiFi devices, the proposed method outperforms the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Front Cover A Lightweight Reprogramming Framework for Cross-Device Fault Diagnosis in Edge Computing First Arrival Picking of Aircraft-Excited Seismic Waves Based on Energy Distribution DMPDD-Net: An Effective Defect Detection Method for Aluminum Profiles Surface Defect C-DHV: A Cascaded Deep Hough Voting-Based Tracking Algorithm for LiDAR Point Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1