人工智能应用的异构集成技术

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2024-10-23 DOI:10.1109/JXCDC.2024.3484958
Madison Manley;Ashita Victor;Hyunggyu Park;Ankit Kaul;Mohanalingam Kathaperumal;Muhannad S. Bakir
{"title":"人工智能应用的异构集成技术","authors":"Madison Manley;Ashita Victor;Hyunggyu Park;Ankit Kaul;Mohanalingam Kathaperumal;Muhannad S. Bakir","doi":"10.1109/JXCDC.2024.3484958","DOIUrl":null,"url":null,"abstract":"The rapid advancement of artificial intelligence (AI) has been enabled by semiconductor-based electronics. However, the conventional methods of transistor scaling are not enough to meet the exponential demand for computing power driven by AI. This has led to a technological shift toward system-level scaling approaches, such as heterogeneous integration (HI). HI is becoming increasingly implemented in many AI accelerator products due to its potential to enhance overall system performance while also reducing electrical interconnect delays and energy consumption, which are critical for supporting data-intensive AI workloads. In this review, we introduce current and emerging HI technologies and their potential for high-performance systems. We then survey recent industrial and research progress in 3-D HI technologies that enable high bandwidth systems and finally present the emergence of glass core packaging for high-performance AI chip packages.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731842","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Integration Technologies for Artificial Intelligence Applications\",\"authors\":\"Madison Manley;Ashita Victor;Hyunggyu Park;Ankit Kaul;Mohanalingam Kathaperumal;Muhannad S. Bakir\",\"doi\":\"10.1109/JXCDC.2024.3484958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancement of artificial intelligence (AI) has been enabled by semiconductor-based electronics. However, the conventional methods of transistor scaling are not enough to meet the exponential demand for computing power driven by AI. This has led to a technological shift toward system-level scaling approaches, such as heterogeneous integration (HI). HI is becoming increasingly implemented in many AI accelerator products due to its potential to enhance overall system performance while also reducing electrical interconnect delays and energy consumption, which are critical for supporting data-intensive AI workloads. In this review, we introduce current and emerging HI technologies and their potential for high-performance systems. We then survey recent industrial and research progress in 3-D HI technologies that enable high bandwidth systems and finally present the emergence of glass core packaging for high-performance AI chip packages.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731842\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731842/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10731842/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

基于半导体的电子技术推动了人工智能(AI)的快速发展。然而,传统的晶体管扩展方法不足以满足人工智能对计算能力的指数级需求。这导致技术转向系统级扩展方法,如异构集成(HI)。由于异构集成具有提高整体系统性能的潜力,同时还能减少电气互连延迟和能耗,这对于支持数据密集型人工智能工作负载至关重要,因此越来越多的人工智能加速器产品开始采用异构集成。在本综述中,我们将介绍当前和新兴的 HI 技术及其在高性能系统中的应用潜力。然后,我们考察了实现高带宽系统的三维 HI 技术的最新工业和研究进展,最后介绍了用于高性能人工智能芯片封装的玻璃芯封装的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Integration Technologies for Artificial Intelligence Applications
The rapid advancement of artificial intelligence (AI) has been enabled by semiconductor-based electronics. However, the conventional methods of transistor scaling are not enough to meet the exponential demand for computing power driven by AI. This has led to a technological shift toward system-level scaling approaches, such as heterogeneous integration (HI). HI is becoming increasingly implemented in many AI accelerator products due to its potential to enhance overall system performance while also reducing electrical interconnect delays and energy consumption, which are critical for supporting data-intensive AI workloads. In this review, we introduce current and emerging HI technologies and their potential for high-performance systems. We then survey recent industrial and research progress in 3-D HI technologies that enable high bandwidth systems and finally present the emergence of glass core packaging for high-performance AI chip packages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1