基于牛顿力学的新型重力干扰补偿惯性导航方法

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-10-23 DOI:10.1109/TIM.2024.3485437
Kaixin Luo;Ruihang Yu;Meiping Wu;Juliang Cao;Yulong Huang
{"title":"基于牛顿力学的新型重力干扰补偿惯性导航方法","authors":"Kaixin Luo;Ruihang Yu;Meiping Wu;Juliang Cao;Yulong Huang","doi":"10.1109/TIM.2024.3485437","DOIUrl":null,"url":null,"abstract":"With the continuous improvement of the accuracy of inertial devices and systems, the effects of gravity disturbance on autonomous inertial navigation system (INS) calculations cannot be overlooked. The traditional gravity disturbance compensation method directly introduces it into the INS calculation link, but the errors of gravity disturbance will lead to irreversible INS calculation errors, ultimately rendering the traditional compensation method ineffective. In this article, a new gravity disturbance compensation method for INS is proposed based on Newtonian mechanics. The INS calculation errors caused by horizontal gravity disturbance are directly corrected in the navigation system in a direct manner, which avoids coupling attitude calculation errors. The physical quantity of direct compensation is derived, and the influences of different compensation periods on the algorithm are tested. The effectiveness of the proposed method is validated using various sources of gravity disturbance. Both simulation and experimental results demonstrate that our method can effectively mitigate the influence of gravity disturbances on high-precision INSs.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Gravity Disturbance Compensation Inertial Navigation Method Based on Newtonian Mechanics\",\"authors\":\"Kaixin Luo;Ruihang Yu;Meiping Wu;Juliang Cao;Yulong Huang\",\"doi\":\"10.1109/TIM.2024.3485437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous improvement of the accuracy of inertial devices and systems, the effects of gravity disturbance on autonomous inertial navigation system (INS) calculations cannot be overlooked. The traditional gravity disturbance compensation method directly introduces it into the INS calculation link, but the errors of gravity disturbance will lead to irreversible INS calculation errors, ultimately rendering the traditional compensation method ineffective. In this article, a new gravity disturbance compensation method for INS is proposed based on Newtonian mechanics. The INS calculation errors caused by horizontal gravity disturbance are directly corrected in the navigation system in a direct manner, which avoids coupling attitude calculation errors. The physical quantity of direct compensation is derived, and the influences of different compensation periods on the algorithm are tested. The effectiveness of the proposed method is validated using various sources of gravity disturbance. Both simulation and experimental results demonstrate that our method can effectively mitigate the influence of gravity disturbances on high-precision INSs.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731838/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731838/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着惯性设备和系统精度的不断提高,重力干扰对自主惯性导航系统(INS)计算的影响不容忽视。传统的重力扰动补偿方法直接将其引入 INS 计算环节,但重力扰动的误差会导致不可逆的 INS 计算误差,最终导致传统补偿方法失效。本文基于牛顿力学提出了一种新的 INS 重力扰动补偿方法。以直接方式在导航系统中直接修正由水平重力扰动引起的 INS 计算误差,避免了耦合姿态计算误差。推导了直接补偿的物理量,并测试了不同补偿周期对算法的影响。利用各种重力干扰源验证了所提方法的有效性。模拟和实验结果表明,我们的方法可以有效减轻重力干扰对高精度 INS 的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Gravity Disturbance Compensation Inertial Navigation Method Based on Newtonian Mechanics
With the continuous improvement of the accuracy of inertial devices and systems, the effects of gravity disturbance on autonomous inertial navigation system (INS) calculations cannot be overlooked. The traditional gravity disturbance compensation method directly introduces it into the INS calculation link, but the errors of gravity disturbance will lead to irreversible INS calculation errors, ultimately rendering the traditional compensation method ineffective. In this article, a new gravity disturbance compensation method for INS is proposed based on Newtonian mechanics. The INS calculation errors caused by horizontal gravity disturbance are directly corrected in the navigation system in a direct manner, which avoids coupling attitude calculation errors. The physical quantity of direct compensation is derived, and the influences of different compensation periods on the algorithm are tested. The effectiveness of the proposed method is validated using various sources of gravity disturbance. Both simulation and experimental results demonstrate that our method can effectively mitigate the influence of gravity disturbances on high-precision INSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Errata to “A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems” Equivalent Bandwidth Matrix of Relative Locations: Image Modeling Method for Defect Degree Identification of In-Vehicle Cable Termination A Variable Reluctance-Based Planar Dual-Coil Angle Sensor With Enhanced Linearity Impedance-Matching Analysis of Wideband Harmonic Disturbance Generator for Railway Train-Network System Dictionary Learning Method for Cyclostationarity Maximization and Its Application to Bearing Fault Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1