拉布拉多海对流中的湍流垂直速度

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-09 DOI:10.1029/2024GL110318
L. Clément, L. Merckelbach, E. Frajka-Williams
{"title":"拉布拉多海对流中的湍流垂直速度","authors":"L. Clément,&nbsp;L. Merckelbach,&nbsp;E. Frajka-Williams","doi":"10.1029/2024GL110318","DOIUrl":null,"url":null,"abstract":"<p>Turbulent vertical velocity measurements are scarce in regions prone to convection such as the Labrador Sea, which hinders our understanding of deep convection dynamics. Vertical velocity, <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math>, is retrieved from wintertime glider deployments in the convective region. From <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math>, downward convective plumes of dense waters are identified. These plumes only cover a small fraction of the convective area. Throughout the convective area, the standard deviation of <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math> agrees with scaling relations for the atmospheric surface and boundary layers. It initially depends on surface buoyancy loss in winter, and later, on wind stress after mid-March. Both periods are characterized by positive turbulent vertical buoyancy flux. During convective periods in winter, the positive buoyancy flux is mostly forced by surface heat loss. After mid-March, when buoyancy loss to the atmosphere is reduced, the positive buoyancy flux results from a restratifying upward freshwater flux, potentially of lateral origins and without much atmospheric influence.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110318","citationCount":"0","resultStr":"{\"title\":\"Turbulent Vertical Velocities in Labrador Sea Convection\",\"authors\":\"L. Clément,&nbsp;L. Merckelbach,&nbsp;E. Frajka-Williams\",\"doi\":\"10.1029/2024GL110318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Turbulent vertical velocity measurements are scarce in regions prone to convection such as the Labrador Sea, which hinders our understanding of deep convection dynamics. Vertical velocity, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n </mrow>\\n <annotation> $w$</annotation>\\n </semantics></math>, is retrieved from wintertime glider deployments in the convective region. From <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n </mrow>\\n <annotation> $w$</annotation>\\n </semantics></math>, downward convective plumes of dense waters are identified. These plumes only cover a small fraction of the convective area. Throughout the convective area, the standard deviation of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n </mrow>\\n <annotation> $w$</annotation>\\n </semantics></math> agrees with scaling relations for the atmospheric surface and boundary layers. It initially depends on surface buoyancy loss in winter, and later, on wind stress after mid-March. Both periods are characterized by positive turbulent vertical buoyancy flux. During convective periods in winter, the positive buoyancy flux is mostly forced by surface heat loss. After mid-March, when buoyancy loss to the atmosphere is reduced, the positive buoyancy flux results from a restratifying upward freshwater flux, potentially of lateral origins and without much atmospheric influence.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110318\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110318","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在拉布拉多海等易发生对流的地区,湍流垂直速度测量数据很少,这妨碍了我们对深层对流动力学的了解。垂直速度 w$w$ 是通过对流区域的冬季滑翔机布放获取的。根据 w$w$,可以确定高密度水体的向下对流羽流。这些羽流只覆盖对流区域的一小部分。在整个对流区域,w$w$ 的标准偏差与大气表层和边界层的比例关系一致。它最初取决于冬季的表面浮力损失,后来取决于三月中旬以后的风压。这两个时期的特点都是正湍流垂直浮力通量。在冬季的对流期,正浮力通量主要由地表热损失所驱动。3 月中旬以后,大气中的浮力损失减少,正浮力通量来自于限制性上升淡水通量,可能来自于横向通量,而不受大气影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbulent Vertical Velocities in Labrador Sea Convection

Turbulent vertical velocity measurements are scarce in regions prone to convection such as the Labrador Sea, which hinders our understanding of deep convection dynamics. Vertical velocity, w $w$ , is retrieved from wintertime glider deployments in the convective region. From w $w$ , downward convective plumes of dense waters are identified. These plumes only cover a small fraction of the convective area. Throughout the convective area, the standard deviation of w $w$ agrees with scaling relations for the atmospheric surface and boundary layers. It initially depends on surface buoyancy loss in winter, and later, on wind stress after mid-March. Both periods are characterized by positive turbulent vertical buoyancy flux. During convective periods in winter, the positive buoyancy flux is mostly forced by surface heat loss. After mid-March, when buoyancy loss to the atmosphere is reduced, the positive buoyancy flux results from a restratifying upward freshwater flux, potentially of lateral origins and without much atmospheric influence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Air-Sea Heat and Moisture Flux Gradients A Marine Barite Perspective of the Late Miocene Biogenic Bloom in the Equatorial Indian Ocean and Equatorial Western Atlantic Ocean Enhanced Ocean Mixing During the Passage of Tropical Cyclone Unexpected Warming From Land Radiative Management Lunar Nearside-Farside Mare Basalt Asymmetry: The Combined Role of Global Crustal Thickness Variations and South Pole-Aitken (SPA) Basin-Induced Lithospheric Thickening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1