Rebecca L. Beadling, Pu Lin, John Krasting, William Ellinger, Anna Coomans, James Milward, Katherine Turner, Xiaoqi Xu, Torge Martin, Maria J. Molina
{"title":"从地表到平流层:大气对南极融水的大规模响应","authors":"Rebecca L. Beadling, Pu Lin, John Krasting, William Ellinger, Anna Coomans, James Milward, Katherine Turner, Xiaoqi Xu, Torge Martin, Maria J. Molina","doi":"10.1029/2024GL110157","DOIUrl":null,"url":null,"abstract":"<p>The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre-industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean-atmosphere heat exchange, result in a change in the top-of-atmosphere radiative balance caused primarily through surface and near-surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid-latitude climate patterns and delayed regional warming signals.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110157","citationCount":"0","resultStr":"{\"title\":\"From the Surface to the Stratosphere: Large-Scale Atmospheric Response to Antarctic Meltwater\",\"authors\":\"Rebecca L. Beadling, Pu Lin, John Krasting, William Ellinger, Anna Coomans, James Milward, Katherine Turner, Xiaoqi Xu, Torge Martin, Maria J. Molina\",\"doi\":\"10.1029/2024GL110157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre-industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean-atmosphere heat exchange, result in a change in the top-of-atmosphere radiative balance caused primarily through surface and near-surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid-latitude climate patterns and delayed regional warming signals.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110157\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110157","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
From the Surface to the Stratosphere: Large-Scale Atmospheric Response to Antarctic Meltwater
The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre-industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean-atmosphere heat exchange, result in a change in the top-of-atmosphere radiative balance caused primarily through surface and near-surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid-latitude climate patterns and delayed regional warming signals.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.