{"title":"基于氧化锆和氧化镁的高韧性分层结构陶瓷涂层","authors":"Weifeng Qian, Bingkun Ning, Shuang Wang, Tianxiang Xie, Yongnan Chen, Qinyang Zhao, Nan Wang, Shaopeng Wang, Haifei Zhan","doi":"10.1002/adfm.202418312","DOIUrl":null,"url":null,"abstract":"A major challenge in the application of ceramic materials is a trade‐off between strength and toughness. In this work, hierarchically structured ceramic coatings (HSCCs) are fabricated to address this challenge. HSCCs feature a dual‐layer micron‐scale structure built on a “brick‐mortar” nanoscale structure, which is achieved by changing the crystalline and amorphous phase ratio during plasma electrolytic oxidation (PEO). It is found that HSCCs with homogeneous interfaces exhibit high thermal stability up to 700 °C and a 65% improvement in shear strain resistance compared to conventional crystalline coatings (CCCs). This improvement is attributed to the stabilizing effect of atoms on the boundaries of the enhancement phase and the facilitating effect on the deformation of the compliant phase. The hierarchical structure effectively leverages the plasticity of the compliant phase and the strength of the enhancement phase facilitated by the homogeneous interface. This work proposes a feasible approach for improving the toughness of ceramic functional composites and mitigating their susceptibility to brittle fracture.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically Structured Ceramic Coatings Based on Zirconia and Magnesium Oxide with High Toughness\",\"authors\":\"Weifeng Qian, Bingkun Ning, Shuang Wang, Tianxiang Xie, Yongnan Chen, Qinyang Zhao, Nan Wang, Shaopeng Wang, Haifei Zhan\",\"doi\":\"10.1002/adfm.202418312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge in the application of ceramic materials is a trade‐off between strength and toughness. In this work, hierarchically structured ceramic coatings (HSCCs) are fabricated to address this challenge. HSCCs feature a dual‐layer micron‐scale structure built on a “brick‐mortar” nanoscale structure, which is achieved by changing the crystalline and amorphous phase ratio during plasma electrolytic oxidation (PEO). It is found that HSCCs with homogeneous interfaces exhibit high thermal stability up to 700 °C and a 65% improvement in shear strain resistance compared to conventional crystalline coatings (CCCs). This improvement is attributed to the stabilizing effect of atoms on the boundaries of the enhancement phase and the facilitating effect on the deformation of the compliant phase. The hierarchical structure effectively leverages the plasticity of the compliant phase and the strength of the enhancement phase facilitated by the homogeneous interface. This work proposes a feasible approach for improving the toughness of ceramic functional composites and mitigating their susceptibility to brittle fracture.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202418312\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418312","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchically Structured Ceramic Coatings Based on Zirconia and Magnesium Oxide with High Toughness
A major challenge in the application of ceramic materials is a trade‐off between strength and toughness. In this work, hierarchically structured ceramic coatings (HSCCs) are fabricated to address this challenge. HSCCs feature a dual‐layer micron‐scale structure built on a “brick‐mortar” nanoscale structure, which is achieved by changing the crystalline and amorphous phase ratio during plasma electrolytic oxidation (PEO). It is found that HSCCs with homogeneous interfaces exhibit high thermal stability up to 700 °C and a 65% improvement in shear strain resistance compared to conventional crystalline coatings (CCCs). This improvement is attributed to the stabilizing effect of atoms on the boundaries of the enhancement phase and the facilitating effect on the deformation of the compliant phase. The hierarchical structure effectively leverages the plasticity of the compliant phase and the strength of the enhancement phase facilitated by the homogeneous interface. This work proposes a feasible approach for improving the toughness of ceramic functional composites and mitigating their susceptibility to brittle fracture.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.