Salah Kouhen, Benjamin A. Storer, Hussein Aluie, David P. Marshall, Hannah M. Christensen
{"title":"中尺度动能谱的对流和水文起源","authors":"Salah Kouhen, Benjamin A. Storer, Hussein Aluie, David P. Marshall, Hannah M. Christensen","doi":"10.1029/2024GL110804","DOIUrl":null,"url":null,"abstract":"<p>The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two-dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse-graining methodology, we are able to present a spatio-temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110804","citationCount":"0","resultStr":"{\"title\":\"Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum\",\"authors\":\"Salah Kouhen, Benjamin A. Storer, Hussein Aluie, David P. Marshall, Hannah M. Christensen\",\"doi\":\"10.1029/2024GL110804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two-dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse-graining methodology, we are able to present a spatio-temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110804\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110804\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110804","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum
The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two-dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse-graining methodology, we are able to present a spatio-temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.