从丰富的风速仪塔数据中推导空气动力粗糙度长度,为风能资源建模提供信息

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-07 DOI:10.1029/2024GL111056
Jiamin Wang, Kun Yang, Ling Yuan, Jiarui Liu, Zhong Peng, Zuhuan Ren, Xu Zhou
{"title":"从丰富的风速仪塔数据中推导空气动力粗糙度长度,为风能资源建模提供信息","authors":"Jiamin Wang,&nbsp;Kun Yang,&nbsp;Ling Yuan,&nbsp;Jiarui Liu,&nbsp;Zhong Peng,&nbsp;Zuhuan Ren,&nbsp;Xu Zhou","doi":"10.1029/2024GL111056","DOIUrl":null,"url":null,"abstract":"<p>Aerodynamic roughness length (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math>) fundamentally affects land surface momentum loss and wind resource simulation, but ground truth data of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> are sparse in space, causing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> datasets used in atmospheric models are empirically estimated from land cover types through a look-up table. In this study, we derived <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> values from 101 anemometer towers in China. Taking them as ground truth, we show that existing gridded <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> datasets determined from either a look-up table or a machine-learning method contain considerable uncertainty and fail to capture the variability of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> within each land cover type, although the latter performs better. Even for the widely used ERA5, its <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> is overestimated in wind-rich regions of China, causing an underestimation of near-surface wind speed. This highlights the necessity to improve <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> data in atmospheric models. Current rapidly expanding anemometer towers may substantially enrich <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> truth data and thus provide potential to improve wind resource modeling.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111056","citationCount":"0","resultStr":"{\"title\":\"Deducing Aerodynamic Roughness Length From Abundant Anemometer Tower Data to Inform Wind Resource Modeling\",\"authors\":\"Jiamin Wang,&nbsp;Kun Yang,&nbsp;Ling Yuan,&nbsp;Jiarui Liu,&nbsp;Zhong Peng,&nbsp;Zuhuan Ren,&nbsp;Xu Zhou\",\"doi\":\"10.1029/2024GL111056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerodynamic roughness length (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math>) fundamentally affects land surface momentum loss and wind resource simulation, but ground truth data of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> are sparse in space, causing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> datasets used in atmospheric models are empirically estimated from land cover types through a look-up table. In this study, we derived <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> values from 101 anemometer towers in China. Taking them as ground truth, we show that existing gridded <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> datasets determined from either a look-up table or a machine-learning method contain considerable uncertainty and fail to capture the variability of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> within each land cover type, although the latter performs better. Even for the widely used ERA5, its <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> is overestimated in wind-rich regions of China, causing an underestimation of near-surface wind speed. This highlights the necessity to improve <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> data in atmospheric models. Current rapidly expanding anemometer towers may substantially enrich <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> truth data and thus provide potential to improve wind resource modeling.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111056\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111056","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空气动力粗糙度长度(z0${z}_{0}$)从根本上影响着地表动量损失和风资源模拟,但z0${z}_{0}$的地面实况数据空间稀少,导致大气模式中使用的z0${z}_{0}$数据集是通过查表根据土地覆被类型经验估算的。在本研究中,我们从中国 101 个风速计塔中得出了 z0${z}_{0}$ 值。以这些数据为基本真实值,我们发现,现有的网格 z0${z}_{0}$ 数据集无论是通过查询表还是机器学习方法确定的,都含有相当大的不确定性,而且无法捕捉到每种土地覆被类型中 z0${z}_{0}$ 的变化,尽管后者的表现更好。即使是广泛使用的ERA5,其z0${z}_{0}$在中国多风地区也被高估,导致近地面风速被低估。这凸显了改进大气模式中 z0{z}_{0}$ 数据的必要性。目前快速扩建的风速计塔可能会极大地丰富 z0${z}_{0}$ 真实数据,从而为改进风资源模式提供可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deducing Aerodynamic Roughness Length From Abundant Anemometer Tower Data to Inform Wind Resource Modeling

Aerodynamic roughness length ( z 0 ${z}_{0}$ ) fundamentally affects land surface momentum loss and wind resource simulation, but ground truth data of z 0 ${z}_{0}$ are sparse in space, causing z 0 ${z}_{0}$ datasets used in atmospheric models are empirically estimated from land cover types through a look-up table. In this study, we derived z 0 ${z}_{0}$ values from 101 anemometer towers in China. Taking them as ground truth, we show that existing gridded z 0 ${z}_{0}$ datasets determined from either a look-up table or a machine-learning method contain considerable uncertainty and fail to capture the variability of z 0 ${z}_{0}$ within each land cover type, although the latter performs better. Even for the widely used ERA5, its z 0 ${z}_{0}$ is overestimated in wind-rich regions of China, causing an underestimation of near-surface wind speed. This highlights the necessity to improve z 0 ${z}_{0}$ data in atmospheric models. Current rapidly expanding anemometer towers may substantially enrich z 0 ${z}_{0}$ truth data and thus provide potential to improve wind resource modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Air-Sea Heat and Moisture Flux Gradients A Marine Barite Perspective of the Late Miocene Biogenic Bloom in the Equatorial Indian Ocean and Equatorial Western Atlantic Ocean Enhanced Ocean Mixing During the Passage of Tropical Cyclone Unexpected Warming From Land Radiative Management Lunar Nearside-Farside Mare Basalt Asymmetry: The Combined Role of Global Crustal Thickness Variations and South Pole-Aitken (SPA) Basin-Induced Lithospheric Thickening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1