亚马逊雨林树冠内频繁降雨导致的新颗粒形成

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2024-11-08 DOI:10.1038/s41561-024-01585-0
Luiz A. T. Machado, Gabriela R. Unfer, Sebastian Brill, Stefanie Hildmann, Christopher Pöhlker, Yafang Cheng, Jonathan Williams, Harder Hartwig, Meinrat O. Andreae, Paulo Artaxo, Joachim Curtius, Marco A. Franco, Micael A. Cecchini, Achim Edtbauer, Thorsten Hoffmann, Bruna Holanda, Théodore Khadir, Radovan Krejci, Leslie A. Kremper, Yunfan Liu, Bruno B. Meller, Mira L. Pöhlker, Carlos A. Quesada, Akima Ringsdorf, Ilona Riipinen, Susan Trumbore, Stefan Wolff, Jos Lelieveld, Ulrich Pöschl
{"title":"亚马逊雨林树冠内频繁降雨导致的新颗粒形成","authors":"Luiz A. T. Machado, Gabriela R. Unfer, Sebastian Brill, Stefanie Hildmann, Christopher Pöhlker, Yafang Cheng, Jonathan Williams, Harder Hartwig, Meinrat O. Andreae, Paulo Artaxo, Joachim Curtius, Marco A. Franco, Micael A. Cecchini, Achim Edtbauer, Thorsten Hoffmann, Bruna Holanda, Théodore Khadir, Radovan Krejci, Leslie A. Kremper, Yunfan Liu, Bruno B. Meller, Mira L. Pöhlker, Carlos A. Quesada, Akima Ringsdorf, Ilona Riipinen, Susan Trumbore, Stefan Wolff, Jos Lelieveld, Ulrich Pöschl","doi":"10.1038/s41561-024-01585-0","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric aerosol particles are essential for forming clouds and precipitation, thereby influencing Earth’s energy budget, water cycle and climate on regional and global scales. However, the origin of aerosol particles over the Amazon rainforest during the wet season is poorly understood. Earlier studies showed new particle formation in the outflow of deep convective clouds and suggested a downward flux of aerosol particles during precipitation events. Here we use comprehensive aerosol, trace gas and meteorological data from the Amazon Tall Tower Observatory to show that rainfall regularly induces bursts of nanoparticles in the nucleation size range. This can be attributed to rain-related scavenging of larger particles and a corresponding reduction of the condensation sink, along with an ozone injection into the forest canopy, which could increase the oxidation of biogenic volatile organic compounds, especially terpenes, and enhance new particle formation. During and after rainfall, the nucleation particle concentrations directly above the canopy are greater than those higher up. This gradient persists throughout the wet season for the nucleation size range, indicating continuous particle formation within the canopy, a net upward flux of newly formed particles and a paradigm shift in understanding aerosol–cloud–precipitation interactions in the Amazon. Particle bursts provide a plausible explanation for the formation of cloud condensation nuclei, leading to the local formation of green-ocean clouds and precipitation. Our findings suggest that an interplay of a rain-related reduction in the condensation sink, primary emissions of gases, mainly terpenes, and particles from the forest canopy, and convective cloud processing determines the population of cloud condensation nuclei in pristine rainforest air.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"95 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequent rainfall-induced new particle formation within the canopy in the Amazon rainforest\",\"authors\":\"Luiz A. T. Machado, Gabriela R. Unfer, Sebastian Brill, Stefanie Hildmann, Christopher Pöhlker, Yafang Cheng, Jonathan Williams, Harder Hartwig, Meinrat O. Andreae, Paulo Artaxo, Joachim Curtius, Marco A. Franco, Micael A. Cecchini, Achim Edtbauer, Thorsten Hoffmann, Bruna Holanda, Théodore Khadir, Radovan Krejci, Leslie A. Kremper, Yunfan Liu, Bruno B. Meller, Mira L. Pöhlker, Carlos A. Quesada, Akima Ringsdorf, Ilona Riipinen, Susan Trumbore, Stefan Wolff, Jos Lelieveld, Ulrich Pöschl\",\"doi\":\"10.1038/s41561-024-01585-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric aerosol particles are essential for forming clouds and precipitation, thereby influencing Earth’s energy budget, water cycle and climate on regional and global scales. However, the origin of aerosol particles over the Amazon rainforest during the wet season is poorly understood. Earlier studies showed new particle formation in the outflow of deep convective clouds and suggested a downward flux of aerosol particles during precipitation events. Here we use comprehensive aerosol, trace gas and meteorological data from the Amazon Tall Tower Observatory to show that rainfall regularly induces bursts of nanoparticles in the nucleation size range. This can be attributed to rain-related scavenging of larger particles and a corresponding reduction of the condensation sink, along with an ozone injection into the forest canopy, which could increase the oxidation of biogenic volatile organic compounds, especially terpenes, and enhance new particle formation. During and after rainfall, the nucleation particle concentrations directly above the canopy are greater than those higher up. This gradient persists throughout the wet season for the nucleation size range, indicating continuous particle formation within the canopy, a net upward flux of newly formed particles and a paradigm shift in understanding aerosol–cloud–precipitation interactions in the Amazon. Particle bursts provide a plausible explanation for the formation of cloud condensation nuclei, leading to the local formation of green-ocean clouds and precipitation. Our findings suggest that an interplay of a rain-related reduction in the condensation sink, primary emissions of gases, mainly terpenes, and particles from the forest canopy, and convective cloud processing determines the population of cloud condensation nuclei in pristine rainforest air.</p>\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41561-024-01585-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-024-01585-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大气气溶胶粒子对形成云层和降水至关重要,从而在区域和全球范围内影响地球的能量预算、水循环和气候。然而,人们对亚马逊雨林上空雨季气溶胶粒子的来源知之甚少。早期的研究表明,在深对流云的外流中会形成新的颗粒,并认为在降水事件中气溶胶颗粒会向下流动。在这里,我们利用亚马逊高塔观测站提供的综合气溶胶、痕量气体和气象数据表明,降雨会定期诱发成核粒径范围内的纳米粒子爆发。这可归因于与降雨有关的较大颗粒物的清除和冷凝汇的相应减少,以及向森林冠层注入臭氧,这可能会增加生物挥发性有机化合物(尤其是萜烯)的氧化,并促进新颗粒物的形成。在降雨期间和降雨之后,树冠正上方的成核粒子浓度要高于高处的成核粒子浓度。对于成核粒径范围而言,这种梯度在整个雨季都持续存在,表明冠层内颗粒物的形成是持续的,新形成的颗粒物是向上的净通量,亚马逊气溶胶-云-降水相互作用的理解范式发生了转变。粒子爆发为云凝结核的形成提供了一个合理的解释,从而导致当地形成绿色海洋云和降水。我们的研究结果表明,与降雨有关的凝结水汇减少、气体(主要是萜烯)和森林冠层颗粒物的一次排放以及对流云处理的相互作用,决定了原始雨林空气中云凝结核的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequent rainfall-induced new particle formation within the canopy in the Amazon rainforest

Atmospheric aerosol particles are essential for forming clouds and precipitation, thereby influencing Earth’s energy budget, water cycle and climate on regional and global scales. However, the origin of aerosol particles over the Amazon rainforest during the wet season is poorly understood. Earlier studies showed new particle formation in the outflow of deep convective clouds and suggested a downward flux of aerosol particles during precipitation events. Here we use comprehensive aerosol, trace gas and meteorological data from the Amazon Tall Tower Observatory to show that rainfall regularly induces bursts of nanoparticles in the nucleation size range. This can be attributed to rain-related scavenging of larger particles and a corresponding reduction of the condensation sink, along with an ozone injection into the forest canopy, which could increase the oxidation of biogenic volatile organic compounds, especially terpenes, and enhance new particle formation. During and after rainfall, the nucleation particle concentrations directly above the canopy are greater than those higher up. This gradient persists throughout the wet season for the nucleation size range, indicating continuous particle formation within the canopy, a net upward flux of newly formed particles and a paradigm shift in understanding aerosol–cloud–precipitation interactions in the Amazon. Particle bursts provide a plausible explanation for the formation of cloud condensation nuclei, leading to the local formation of green-ocean clouds and precipitation. Our findings suggest that an interplay of a rain-related reduction in the condensation sink, primary emissions of gases, mainly terpenes, and particles from the forest canopy, and convective cloud processing determines the population of cloud condensation nuclei in pristine rainforest air.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
Author Correction: Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands Multi-month forecasts of marine heatwaves and ocean acidification extremes Arctic freshwater anomaly transiting to the North Atlantic delayed within a buffer zone Low-elevation forest extent in the western United States constrained by soil surface temperatures Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1