Chunfeng Du, Yipeng Gao, Min Zha, Cheng Wang, Jian Wang, Hui-Yuan Wang
{"title":"超塑性变形下镁合金晶界结构的变化","authors":"Chunfeng Du, Yipeng Gao, Min Zha, Cheng Wang, Jian Wang, Hui-Yuan Wang","doi":"10.1016/j.ijplas.2024.104167","DOIUrl":null,"url":null,"abstract":"Superplastic deformation in metals and alloys, characterized by ultrahigh ductility (exceeding 300%) without cracking at elevated temperatures, is a critical process for manufacturing complex-shaped components. While a few grain-boundary (GB)-mediated deformation mechanisms have been identified as essential contributors to superplasticity in fine-grained polycrystals (grain size is typically less than 10 μm), it is still a challenge to maintain a steady fine-grained microstructure and sustainable plastic flow at high temperatures. Partially due to the lack of a quantitative description of dislocation-GB reactions, it has not been well recognized how grain coarsening can be suppressed by the external loading during superplastic deformation. In this work, we address this challenge by formulating a disclination-dislocation coupling equation within the Lie-algebra framework, providing a quantitative understanding of the interactions between disclinations, dislocations, and GBs. Using <em>quasi-in-situ</em> electron backscattered diffraction (EBSD) analysis in Mg alloys, we systematically investigate the multiscale interactions of the defects and their impact on grain structure evolution. Three key mechanisms that suppress conventional grain coarsening have been identified, i.e., disclination-assisted GB accommodation, disclination-GB pinning, and disclination-induced sub-GB crossing, all of which are captured by the proposed equation. This study contributes to the broader field of plasticity by linking macroscopic deformation behavior with microscopic mechanisms, offering new insights into the theory of superplastic deformation in metals and alloys.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"15 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of grain boundary structure mediated by disclinations in magnesium alloys under superplastic deformation\",\"authors\":\"Chunfeng Du, Yipeng Gao, Min Zha, Cheng Wang, Jian Wang, Hui-Yuan Wang\",\"doi\":\"10.1016/j.ijplas.2024.104167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superplastic deformation in metals and alloys, characterized by ultrahigh ductility (exceeding 300%) without cracking at elevated temperatures, is a critical process for manufacturing complex-shaped components. While a few grain-boundary (GB)-mediated deformation mechanisms have been identified as essential contributors to superplasticity in fine-grained polycrystals (grain size is typically less than 10 μm), it is still a challenge to maintain a steady fine-grained microstructure and sustainable plastic flow at high temperatures. Partially due to the lack of a quantitative description of dislocation-GB reactions, it has not been well recognized how grain coarsening can be suppressed by the external loading during superplastic deformation. In this work, we address this challenge by formulating a disclination-dislocation coupling equation within the Lie-algebra framework, providing a quantitative understanding of the interactions between disclinations, dislocations, and GBs. Using <em>quasi-in-situ</em> electron backscattered diffraction (EBSD) analysis in Mg alloys, we systematically investigate the multiscale interactions of the defects and their impact on grain structure evolution. Three key mechanisms that suppress conventional grain coarsening have been identified, i.e., disclination-assisted GB accommodation, disclination-GB pinning, and disclination-induced sub-GB crossing, all of which are captured by the proposed equation. This study contributes to the broader field of plasticity by linking macroscopic deformation behavior with microscopic mechanisms, offering new insights into the theory of superplastic deformation in metals and alloys.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2024.104167\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The evolution of grain boundary structure mediated by disclinations in magnesium alloys under superplastic deformation
Superplastic deformation in metals and alloys, characterized by ultrahigh ductility (exceeding 300%) without cracking at elevated temperatures, is a critical process for manufacturing complex-shaped components. While a few grain-boundary (GB)-mediated deformation mechanisms have been identified as essential contributors to superplasticity in fine-grained polycrystals (grain size is typically less than 10 μm), it is still a challenge to maintain a steady fine-grained microstructure and sustainable plastic flow at high temperatures. Partially due to the lack of a quantitative description of dislocation-GB reactions, it has not been well recognized how grain coarsening can be suppressed by the external loading during superplastic deformation. In this work, we address this challenge by formulating a disclination-dislocation coupling equation within the Lie-algebra framework, providing a quantitative understanding of the interactions between disclinations, dislocations, and GBs. Using quasi-in-situ electron backscattered diffraction (EBSD) analysis in Mg alloys, we systematically investigate the multiscale interactions of the defects and their impact on grain structure evolution. Three key mechanisms that suppress conventional grain coarsening have been identified, i.e., disclination-assisted GB accommodation, disclination-GB pinning, and disclination-induced sub-GB crossing, all of which are captured by the proposed equation. This study contributes to the broader field of plasticity by linking macroscopic deformation behavior with microscopic mechanisms, offering new insights into the theory of superplastic deformation in metals and alloys.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.