Aldrich Ngan , Zi Qi Chen , Aaron Bleasdale-Pollowy , Christopher Chan , Frank Gu
{"title":"利用基于 TiO2 的浮力光催化剂实现环境太阳能驱动的硒酸盐还原和工业盐水中的硒酸盐去除","authors":"Aldrich Ngan , Zi Qi Chen , Aaron Bleasdale-Pollowy , Christopher Chan , Frank Gu","doi":"10.1016/j.watres.2024.122761","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium (Se), released from mining, power generation, and agriculture, is an environmentally and ecologically concerning contaminant due to its toxicity at elevated concentrations. Se oxyanions are highly soluble and mobile in aquatic ecosystems, and have a strong tendency to bioaccumulate and biomagnify, leading to acute and chronic toxicity in animals and humans. Photocatalysis presents a promising sustainable Se treatment solution and has successfully reduced and removed Se from mining-influenced matrices using UV-powered slurry photoreactor systems. Despite its potential, active photocatalytic water treatment faces significant challenges, particularly high operating costs and limited development of scalable deployment strategies, which hinder its real-world application. Herein, we adapt photocatalytic Se reduction and removal towards an easily deployable solar-driven semi-passive application using TiO<sub>2</sub>-based buoyant photocatalysts (BPCs). The results demonstrate successful semi-passive photocatalytic selenium reduction and removal using BPCs under ambient solar conditions, achieving up to 99.6 % removal of Se from an industrial brine matrix containing ∼3.5 mg/L of Se, despite challenges from dissolved oxygen and reactive oxygen species (ROS). We advance the mechanistic understanding of the ambient Se reduction pathway, successfully identifying Se(IV) as a reduction intermediate, and uncovering the role formic acid plays in suppressing the oxidative effects of ROS, enabling the complete reduction of Se. We address the major challenges to both Se treatment and environmental photocatalysis and highlight the potential of sustainable solar-driven and semi-passive photocatalytic processes to address environmental challenges like selenium.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122761"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambient solar-driven selenate reduction and removal from industrial brine using TiO2-based buoyant photocatalysts\",\"authors\":\"Aldrich Ngan , Zi Qi Chen , Aaron Bleasdale-Pollowy , Christopher Chan , Frank Gu\",\"doi\":\"10.1016/j.watres.2024.122761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Selenium (Se), released from mining, power generation, and agriculture, is an environmentally and ecologically concerning contaminant due to its toxicity at elevated concentrations. Se oxyanions are highly soluble and mobile in aquatic ecosystems, and have a strong tendency to bioaccumulate and biomagnify, leading to acute and chronic toxicity in animals and humans. Photocatalysis presents a promising sustainable Se treatment solution and has successfully reduced and removed Se from mining-influenced matrices using UV-powered slurry photoreactor systems. Despite its potential, active photocatalytic water treatment faces significant challenges, particularly high operating costs and limited development of scalable deployment strategies, which hinder its real-world application. Herein, we adapt photocatalytic Se reduction and removal towards an easily deployable solar-driven semi-passive application using TiO<sub>2</sub>-based buoyant photocatalysts (BPCs). The results demonstrate successful semi-passive photocatalytic selenium reduction and removal using BPCs under ambient solar conditions, achieving up to 99.6 % removal of Se from an industrial brine matrix containing ∼3.5 mg/L of Se, despite challenges from dissolved oxygen and reactive oxygen species (ROS). We advance the mechanistic understanding of the ambient Se reduction pathway, successfully identifying Se(IV) as a reduction intermediate, and uncovering the role formic acid plays in suppressing the oxidative effects of ROS, enabling the complete reduction of Se. We address the major challenges to both Se treatment and environmental photocatalysis and highlight the potential of sustainable solar-driven and semi-passive photocatalytic processes to address environmental challenges like selenium.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"268 \",\"pages\":\"Article 122761\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424016609\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016609","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Ambient solar-driven selenate reduction and removal from industrial brine using TiO2-based buoyant photocatalysts
Selenium (Se), released from mining, power generation, and agriculture, is an environmentally and ecologically concerning contaminant due to its toxicity at elevated concentrations. Se oxyanions are highly soluble and mobile in aquatic ecosystems, and have a strong tendency to bioaccumulate and biomagnify, leading to acute and chronic toxicity in animals and humans. Photocatalysis presents a promising sustainable Se treatment solution and has successfully reduced and removed Se from mining-influenced matrices using UV-powered slurry photoreactor systems. Despite its potential, active photocatalytic water treatment faces significant challenges, particularly high operating costs and limited development of scalable deployment strategies, which hinder its real-world application. Herein, we adapt photocatalytic Se reduction and removal towards an easily deployable solar-driven semi-passive application using TiO2-based buoyant photocatalysts (BPCs). The results demonstrate successful semi-passive photocatalytic selenium reduction and removal using BPCs under ambient solar conditions, achieving up to 99.6 % removal of Se from an industrial brine matrix containing ∼3.5 mg/L of Se, despite challenges from dissolved oxygen and reactive oxygen species (ROS). We advance the mechanistic understanding of the ambient Se reduction pathway, successfully identifying Se(IV) as a reduction intermediate, and uncovering the role formic acid plays in suppressing the oxidative effects of ROS, enabling the complete reduction of Se. We address the major challenges to both Se treatment and environmental photocatalysis and highlight the potential of sustainable solar-driven and semi-passive photocatalytic processes to address environmental challenges like selenium.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.