旅行者 2 号飞越天王星期间天王星磁层的异常状态

IF 2.9 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH ACS Chemical Health & Safety Pub Date : 2024-11-11 DOI:10.1038/s41550-024-02389-3
Jamie M. Jasinski, Corey J. Cochrane, Xianzhe Jia, William R. Dunn, Elias Roussos, Tom A. Nordheim, Leonardo H. Regoli, Nick Achilleos, Norbert Krupp, Neil Murphy
{"title":"旅行者 2 号飞越天王星期间天王星磁层的异常状态","authors":"Jamie M. Jasinski, Corey J. Cochrane, Xianzhe Jia, William R. Dunn, Elias Roussos, Tom A. Nordheim, Leonardo H. Regoli, Nick Achilleos, Norbert Krupp, Neil Murphy","doi":"10.1038/s41550-024-02389-3","DOIUrl":null,"url":null,"abstract":"<p>The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus’s magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations. Here we revisit the Voyager 2 dataset to show that Voyager 2 observed Uranus’s magnetosphere in an anomalous, compressed state that we estimate to be present less than 5% of the time. If the spacecraft had arrived only a few days earlier, the upstream solar wind dynamic pressure would have been ~20 times lower, resulting in a dramatically different magnetospheric configuration. We postulate that such a compression of the magnetosphere could increase energetic electron fluxes within the radiation belts and empty the magnetosphere of its plasma temporarily. Therefore, the interpretation of Uranus’s magnetosphere as being extreme may simply be a product of a flyby that occurred under extreme upstream solar wind conditions.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anomalous state of Uranus’s magnetosphere during the Voyager 2 flyby\",\"authors\":\"Jamie M. Jasinski, Corey J. Cochrane, Xianzhe Jia, William R. Dunn, Elias Roussos, Tom A. Nordheim, Leonardo H. Regoli, Nick Achilleos, Norbert Krupp, Neil Murphy\",\"doi\":\"10.1038/s41550-024-02389-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus’s magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations. Here we revisit the Voyager 2 dataset to show that Voyager 2 observed Uranus’s magnetosphere in an anomalous, compressed state that we estimate to be present less than 5% of the time. If the spacecraft had arrived only a few days earlier, the upstream solar wind dynamic pressure would have been ~20 times lower, resulting in a dramatically different magnetospheric configuration. We postulate that such a compression of the magnetosphere could increase energetic electron fluxes within the radiation belts and empty the magnetosphere of its plasma temporarily. Therefore, the interpretation of Uranus’s magnetosphere as being extreme may simply be a product of a flyby that occurred under extreme upstream solar wind conditions.</p>\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-024-02389-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02389-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

1986 年旅行者 2 号飞越天王星时发现了一个异常倾斜和偏离中心的磁场。我们根据这唯一的一次现场测量,将天王星的磁层解释为太阳系典型的极端磁层;天王星磁层具有莫名其妙的强烈电子辐射带和严重的等离子体耗竭磁层。然而,在解释这些观测结果时,很少考虑太阳风的外力作用。在这里,我们重新研究了旅行者 2 号的数据集,结果表明旅行者 2 号观测到天王星的磁层处于一种异常的压缩状态,我们估计这种状态出现的时间不到 5%。如果宇宙飞船只提前几天到达,上游太阳风动压会降低约 20 倍,从而导致磁层构造发生巨大变化。我们推测,磁层的这种压缩可能会增加辐射带内的高能电子通量,并暂时排空磁层的等离子体。因此,天王星磁层的极端解释可能只是在极端上游太阳风条件下飞越天王星的产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The anomalous state of Uranus’s magnetosphere during the Voyager 2 flyby

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus’s magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations. Here we revisit the Voyager 2 dataset to show that Voyager 2 observed Uranus’s magnetosphere in an anomalous, compressed state that we estimate to be present less than 5% of the time. If the spacecraft had arrived only a few days earlier, the upstream solar wind dynamic pressure would have been ~20 times lower, resulting in a dramatically different magnetospheric configuration. We postulate that such a compression of the magnetosphere could increase energetic electron fluxes within the radiation belts and empty the magnetosphere of its plasma temporarily. Therefore, the interpretation of Uranus’s magnetosphere as being extreme may simply be a product of a flyby that occurred under extreme upstream solar wind conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Health & Safety
ACS Chemical Health & Safety PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.10
自引率
20.00%
发文量
63
期刊介绍: The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.
期刊最新文献
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT Open-ended molecular recording of sequential cellular events into DNA Detection of an orthogonal alignment between parsec-scale AGN jets and their host galaxies Mineral and chemical detail of rocky exoplanet surfaces could be detectable HSD3B1, prostate cancer mortality and modifiable outcomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1