Benjamin X. Lam, Zhuohan Li, Tara P. Mishra, Gerbrand Ceder
{"title":"磷酸盐基锂离子导体在碱性环境中的降解机制","authors":"Benjamin X. Lam, Zhuohan Li, Tara P. Mishra, Gerbrand Ceder","doi":"10.1002/aenm.202403596","DOIUrl":null,"url":null,"abstract":"NASICON‐type Li conductors (Li‐NASICON) have traditionally been regarded as promising candidates for solid‐state Li‐air battery applications because of their stability in water and ambient air. However, the presence of water in the cathode of a Li‐air battery can induce a highly alkaline environment by modifying the discharge product from Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> to LiOH which can potentially degrade cathode and separator materials. This study investigates the alkaline stability of common Li‐NASICON chemistries through a systematic experimental study of LiTi<jats:sub>x</jats:sub>Ge<jats:sub>2‐x</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LTGP) with varying x = 0–2.0. Density functional theory calculations are combined to gain a mechanistic understanding of the alkaline instability. It is demonstrated that the instability of LTGP in an alkaline environment is mainly driven by the dissolution of PO<jats:sub>4</jats:sub><jats:sup>3–</jats:sup> groups, which subsequently precipitate as Li<jats:sub>3</jats:sub>PO<jats:sub>4</jats:sub>. The introduction of Ti facilitates the formation of a Ti‐rich compound on the surface that eventually passivates the material, but only after significant bulk degradation. Consequently, phosphate‐based Li‐NASICON materials exhibit limited alkaline stability, raising concerns about their viability in humid Li‐air batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation Mechanism of Phosphate‐Based Li‐NASICON Conductors in Alkaline Environment\",\"authors\":\"Benjamin X. Lam, Zhuohan Li, Tara P. Mishra, Gerbrand Ceder\",\"doi\":\"10.1002/aenm.202403596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASICON‐type Li conductors (Li‐NASICON) have traditionally been regarded as promising candidates for solid‐state Li‐air battery applications because of their stability in water and ambient air. However, the presence of water in the cathode of a Li‐air battery can induce a highly alkaline environment by modifying the discharge product from Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> to LiOH which can potentially degrade cathode and separator materials. This study investigates the alkaline stability of common Li‐NASICON chemistries through a systematic experimental study of LiTi<jats:sub>x</jats:sub>Ge<jats:sub>2‐x</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LTGP) with varying x = 0–2.0. Density functional theory calculations are combined to gain a mechanistic understanding of the alkaline instability. It is demonstrated that the instability of LTGP in an alkaline environment is mainly driven by the dissolution of PO<jats:sub>4</jats:sub><jats:sup>3–</jats:sup> groups, which subsequently precipitate as Li<jats:sub>3</jats:sub>PO<jats:sub>4</jats:sub>. The introduction of Ti facilitates the formation of a Ti‐rich compound on the surface that eventually passivates the material, but only after significant bulk degradation. Consequently, phosphate‐based Li‐NASICON materials exhibit limited alkaline stability, raising concerns about their viability in humid Li‐air batteries.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403596\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Degradation Mechanism of Phosphate‐Based Li‐NASICON Conductors in Alkaline Environment
NASICON‐type Li conductors (Li‐NASICON) have traditionally been regarded as promising candidates for solid‐state Li‐air battery applications because of their stability in water and ambient air. However, the presence of water in the cathode of a Li‐air battery can induce a highly alkaline environment by modifying the discharge product from Li2O2 to LiOH which can potentially degrade cathode and separator materials. This study investigates the alkaline stability of common Li‐NASICON chemistries through a systematic experimental study of LiTixGe2‐x(PO4)3 (LTGP) with varying x = 0–2.0. Density functional theory calculations are combined to gain a mechanistic understanding of the alkaline instability. It is demonstrated that the instability of LTGP in an alkaline environment is mainly driven by the dissolution of PO43– groups, which subsequently precipitate as Li3PO4. The introduction of Ti facilitates the formation of a Ti‐rich compound on the surface that eventually passivates the material, but only after significant bulk degradation. Consequently, phosphate‐based Li‐NASICON materials exhibit limited alkaline stability, raising concerns about their viability in humid Li‐air batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.