机械可调、可堆肥、可愈合和可扩展的工程生物材料

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-12 DOI:10.1038/s41467-024-53052-4
Avinash Manjula-Basavanna, Anna M. Duraj-Thatte, Neel S. Joshi
{"title":"机械可调、可堆肥、可愈合和可扩展的工程生物材料","authors":"Avinash Manjula-Basavanna, Anna M. Duraj-Thatte, Neel S. Joshi","doi":"10.1038/s41467-024-53052-4","DOIUrl":null,"url":null,"abstract":"<p>Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability – a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5–1 g L<sup>−1</sup>), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1–160%) and Young’s modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young’s modulus by two times. The designed engineered living materials biodegrade completely in 15–75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials\",\"authors\":\"Avinash Manjula-Basavanna, Anna M. Duraj-Thatte, Neel S. Joshi\",\"doi\":\"10.1038/s41467-024-53052-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability – a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5–1 g L<sup>−1</sup>), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1–160%) and Young’s modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young’s modulus by two times. The designed engineered living materials biodegrade completely in 15–75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53052-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53052-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

先进的设计策略对于充分发挥工程生物材料的潜力至关重要,包括其生物降解性、可制造性、可持续性以及定制功能特性的能力。为了实现这些目标,我们提出了具有可堆肥性、可愈合性和可扩展性的机械工程活体材料--一种将这些特性集成在可拉伸塑料形式中的材料,同时具有可冲洗性、可堆肥性和纸张特性。这种类似塑料/纸张的材料是直接从含有工程卷曲蛋白纳米纤维的培养细菌生物质(40%)中生产出来的,生产量可扩展(0.5-1 g L-1)。断裂伸长率(1-160%)和杨氏模量(6-450 兆帕)可调至两个数量级以上。通过基因编码共价交联 Curli 纳米纤维,我们将杨氏模量提高了两倍。所设计的工程生物材料可在 15-75 天内完全生物降解,而其机械性能与石化塑料相当,因此可用作初级包装的可堆肥材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials

Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability – a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5–1 g L−1), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1–160%) and Young’s modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young’s modulus by two times. The designed engineered living materials biodegrade completely in 15–75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Exactly defined molecular weight poly(ethylene glycol) allows for facile identification of PEGylation sites on proteins Achieving synergistic benefits through integrated governance of cultivated cadmium contamination via multistakeholder collaboration Human Disabled-2 regulates thromboxane A2 signaling for efficient hemostasis in thrombocytopenia Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation Charting and probing the activity of ADARs in human development and cell-fate specification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1