通过图增强对比学习实现云系统的精确异常检测

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-11-12 DOI:10.1007/s40747-024-01659-x
Zhen Zhang, Zhe Zhu, Chen Xu, Jinyu Zhang, Shaohua Xu
{"title":"通过图增强对比学习实现云系统的精确异常检测","authors":"Zhen Zhang, Zhe Zhu, Chen Xu, Jinyu Zhang, Shaohua Xu","doi":"10.1007/s40747-024-01659-x","DOIUrl":null,"url":null,"abstract":"<p>As a critical technology, anomaly detection ensures the smooth operation of cloud systems while maintaining the market competitiveness of cloud service providers. However, the resource data in real-world cloud systems is predominantly unannotated, leading to insufficient supervised signals for anomaly detection. Moreover, complicated topological associations existed between cloud servers (e.g., computation, storage, and communication). While acquiring resource information, correlating the system topology is challenging. To this end, we propose the GCAD for cloud system anomaly detection, which integrates data augmentation, GraphGRU, contrastive learning, and reconstruction. First, GCAD constructs positive and negative sample pairs through the masking and Gaussian noise data augmentation. Then, the GraphGRU processes extended temporal graph data, extracting and fusing spatiotemporal features from resource status and system topology. In addition, GCAD introduces linear attention for encoding spatiotemporal representations to capture their global correlation information. The weight parameters of the encoder are optimized using a contrastive learning mechanism. Finally, GCAD utilizes a reconstruction technique to calculate anomaly scores, facilitating the evaluation of the state of the cloud system at each time point. Experimental results indicate that GCAD outperforms state-of-the-art compared methods on two real-world datasets that contain topology information.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards accurate anomaly detection for cloud system via graph-enhanced contrastive learning\",\"authors\":\"Zhen Zhang, Zhe Zhu, Chen Xu, Jinyu Zhang, Shaohua Xu\",\"doi\":\"10.1007/s40747-024-01659-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a critical technology, anomaly detection ensures the smooth operation of cloud systems while maintaining the market competitiveness of cloud service providers. However, the resource data in real-world cloud systems is predominantly unannotated, leading to insufficient supervised signals for anomaly detection. Moreover, complicated topological associations existed between cloud servers (e.g., computation, storage, and communication). While acquiring resource information, correlating the system topology is challenging. To this end, we propose the GCAD for cloud system anomaly detection, which integrates data augmentation, GraphGRU, contrastive learning, and reconstruction. First, GCAD constructs positive and negative sample pairs through the masking and Gaussian noise data augmentation. Then, the GraphGRU processes extended temporal graph data, extracting and fusing spatiotemporal features from resource status and system topology. In addition, GCAD introduces linear attention for encoding spatiotemporal representations to capture their global correlation information. The weight parameters of the encoder are optimized using a contrastive learning mechanism. Finally, GCAD utilizes a reconstruction technique to calculate anomaly scores, facilitating the evaluation of the state of the cloud system at each time point. Experimental results indicate that GCAD outperforms state-of-the-art compared methods on two real-world datasets that contain topology information.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01659-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01659-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

作为一项关键技术,异常检测既能确保云系统的平稳运行,又能保持云服务提供商的市场竞争力。然而,现实世界中云系统的资源数据主要是无标注的,导致异常检测的监督信号不足。此外,云服务器之间存在复杂的拓扑关联(如计算、存储和通信)。在获取资源信息的同时,关联系统拓扑结构也是一项挑战。为此,我们提出了用于云系统异常检测的 GCAD,它集成了数据增强、GraphGRU、对比学习和重构。首先,GCAD 通过掩蔽和高斯噪声数据增强构建正负样本对。然后,GraphGRU 处理扩展的时间图数据,从资源状态和系统拓扑中提取并融合时空特征。此外,GCAD 还引入了线性注意来编码时空表征,以捕捉其全局相关信息。编码器的权重参数通过对比学习机制进行优化。最后,GCAD 利用重构技术计算异常分数,从而便于评估云系统在每个时间点的状态。实验结果表明,在两个包含拓扑信息的真实数据集上,GCAD 的表现优于最先进的比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards accurate anomaly detection for cloud system via graph-enhanced contrastive learning

As a critical technology, anomaly detection ensures the smooth operation of cloud systems while maintaining the market competitiveness of cloud service providers. However, the resource data in real-world cloud systems is predominantly unannotated, leading to insufficient supervised signals for anomaly detection. Moreover, complicated topological associations existed between cloud servers (e.g., computation, storage, and communication). While acquiring resource information, correlating the system topology is challenging. To this end, we propose the GCAD for cloud system anomaly detection, which integrates data augmentation, GraphGRU, contrastive learning, and reconstruction. First, GCAD constructs positive and negative sample pairs through the masking and Gaussian noise data augmentation. Then, the GraphGRU processes extended temporal graph data, extracting and fusing spatiotemporal features from resource status and system topology. In addition, GCAD introduces linear attention for encoding spatiotemporal representations to capture their global correlation information. The weight parameters of the encoder are optimized using a contrastive learning mechanism. Finally, GCAD utilizes a reconstruction technique to calculate anomaly scores, facilitating the evaluation of the state of the cloud system at each time point. Experimental results indicate that GCAD outperforms state-of-the-art compared methods on two real-world datasets that contain topology information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
LCANet: a model for analysis of students real-time sentiment by integrating attention mechanism and joint loss function IEDSFAN: information enhancement and dynamic-static fusion attention network for traffic flow forecasting Early stroke behavior detection based on improved video masked autoencoders for potential patients Bridging the gap: multi-granularity representation learning for text-based vehicle retrieval GAN-based pseudo random number generation optimized through genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1