刚玉状 Ir2O3 和 Ir2O3-Ga2O3 合金的电子特性

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-11 DOI:10.1063/5.0232445
Shoaib Khalid, Anderson Janotti
{"title":"刚玉状 Ir2O3 和 Ir2O3-Ga2O3 合金的电子特性","authors":"Shoaib Khalid, Anderson Janotti","doi":"10.1063/5.0232445","DOIUrl":null,"url":null,"abstract":"In the hexagonal, corundum-like structure, α-Ga2O3 has a bandgap of ∼ 5.1 eV, which, combined with its relatively small electron effective mass, high Baliga's figure of merit, and high breakdown field, makes it a promising candidate for power electronics. Ga2O3 is easy to dope n-type, but impossible to dope p-type, impeding the realization of some electronic device designs. Developing a lattice-matched p-type material that forms a high-quality heterojunction with n-type Ga2O3 would open new opportunities in electronics and perhaps optoelectronic devices. In this work, we studied Ir2O3 as a candidate for that purpose. Using hybrid density functional theory calculations we predict the electronic band structure of α-Ir2O3 and compare that to α-Ga2O3, and study the stability and electronic properties of α-(IrxGa1−x)2O3 alloys. We discuss the band offset between the two materials and compare it with recently available experimental data. We find that the Ir d bands that compose the top of the valence band in α-Ir2O3 are much higher in energy than O p bands in α-Ga2O3, possibly enabling effective p-type doping. Our results provide an insight into using the Ir2O3 or Ir2O3-Ga2O3 alloys as p-type material lattice-matched to α-Ga2O3 for the realization of p–n heterojunctions.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic properties of corundum-like Ir2O3 and Ir2O3-Ga2O3 alloys\",\"authors\":\"Shoaib Khalid, Anderson Janotti\",\"doi\":\"10.1063/5.0232445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the hexagonal, corundum-like structure, α-Ga2O3 has a bandgap of ∼ 5.1 eV, which, combined with its relatively small electron effective mass, high Baliga's figure of merit, and high breakdown field, makes it a promising candidate for power electronics. Ga2O3 is easy to dope n-type, but impossible to dope p-type, impeding the realization of some electronic device designs. Developing a lattice-matched p-type material that forms a high-quality heterojunction with n-type Ga2O3 would open new opportunities in electronics and perhaps optoelectronic devices. In this work, we studied Ir2O3 as a candidate for that purpose. Using hybrid density functional theory calculations we predict the electronic band structure of α-Ir2O3 and compare that to α-Ga2O3, and study the stability and electronic properties of α-(IrxGa1−x)2O3 alloys. We discuss the band offset between the two materials and compare it with recently available experimental data. We find that the Ir d bands that compose the top of the valence band in α-Ir2O3 are much higher in energy than O p bands in α-Ga2O3, possibly enabling effective p-type doping. Our results provide an insight into using the Ir2O3 or Ir2O3-Ga2O3 alloys as p-type material lattice-matched to α-Ga2O3 for the realization of p–n heterojunctions.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232445\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232445","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在六方刚玉状结构中,α-Ga2O3 的带隙为∼ 5.1 eV,再加上其相对较小的电子有效质量、较高的巴利加功勋值和较高的击穿场,使其成为功率电子器件的理想候选材料。Ga2O3 易于掺杂 n 型,但无法掺杂 p 型,这阻碍了某些电子器件设计的实现。开发一种能与 n 型 Ga2O3 形成高质量异质结的晶格匹配 p 型材料,将为电子器件乃至光电器件带来新的机遇。在这项研究中,我们将 Ir2O3 作为候选材料进行了研究。通过混合密度泛函理论计算,我们预测了 α-Ir2O3 的电子能带结构,并将其与α-Ga2O3 进行了比较,还研究了 α-(IrxGa1-x)2O3 合金的稳定性和电子特性。我们讨论了这两种材料之间的能带偏移,并将其与最近获得的实验数据进行了比较。我们发现,α-Ir2O3 中构成价带顶部的 Ir d 带的能量远高于 α-Ga2O3 中的 O p 带,这可能使 p 型掺杂成为可能。我们的研究结果为使用 Ir2O3 或 Ir2O3-Ga2O3 合金作为与 α-Ga2O3 晶格匹配的 p 型材料来实现 p-n 异质结提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic properties of corundum-like Ir2O3 and Ir2O3-Ga2O3 alloys
In the hexagonal, corundum-like structure, α-Ga2O3 has a bandgap of ∼ 5.1 eV, which, combined with its relatively small electron effective mass, high Baliga's figure of merit, and high breakdown field, makes it a promising candidate for power electronics. Ga2O3 is easy to dope n-type, but impossible to dope p-type, impeding the realization of some electronic device designs. Developing a lattice-matched p-type material that forms a high-quality heterojunction with n-type Ga2O3 would open new opportunities in electronics and perhaps optoelectronic devices. In this work, we studied Ir2O3 as a candidate for that purpose. Using hybrid density functional theory calculations we predict the electronic band structure of α-Ir2O3 and compare that to α-Ga2O3, and study the stability and electronic properties of α-(IrxGa1−x)2O3 alloys. We discuss the band offset between the two materials and compare it with recently available experimental data. We find that the Ir d bands that compose the top of the valence band in α-Ir2O3 are much higher in energy than O p bands in α-Ga2O3, possibly enabling effective p-type doping. Our results provide an insight into using the Ir2O3 or Ir2O3-Ga2O3 alloys as p-type material lattice-matched to α-Ga2O3 for the realization of p–n heterojunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Impact of electron velocity modulation on microwave power performance for AlGaN/GaN HFETs Deep learning-driven super-resolution in Raman hyperspectral imaging: Efficient high-resolution reconstruction from low-resolution data TCAD-based investigation of 1/f noise in advanced 22 nm FDSOI MOSFETs Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions Molecular beam epitaxy and band structures of type-II antiferromagnetic semiconductor EuTe thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1