{"title":"组蛋白去乙酰化酶 RhHDA15 通过表观遗传调节玫瑰的活性氧平衡来抑制花瓣衰老","authors":"Meizhu Qin, Zhicheng Wu, Chengkun Zhang, Yunhe Jiang, Cai-Zhong Jiang, Xiaoming Sun, Junping Gao","doi":"10.1093/plphys/kiae612","DOIUrl":null,"url":null,"abstract":"Epigenetic modifications play vital roles in many biological processes. Flower senescence involves epigenetic factors that influence the chromatin state and gene expression. However, the molecular mechanism underlying the role of histone deacetylation in regulating flower senescence has not been elucidated. Here, we demonstrate that histone deacetylation is involved in flower senescence by fine-tuning reactive oxygen species (ROS) homeostasis in rose (Rosa hybrida). Our data reveal that the histone lysine deacetyltransferase RhHDA15 inhibits ROS accumulation and petal senescence by downregulating the expression of NADPH OXIDASE/RESPIRATORY BURST OXIDASE HOMOLOG (RhRboh) genes. Furthermore, the transcription factor RELATED TO ABI3/VP1 2 (RhRAV2) recruits RhHDA15 and the co-repressor TOPLESS (RhTPL) to suppress flower senescence by reducing H3 lysine 9 acetylation (H3K9ac) at the RhRbohA1/2 promoter and thus directly inhibiting precocious RhRbohA1/2 expression. Our work sheds light on an epigenetic mechanism in which histone deacetylation plays a crucial role in controlling petal senescence by precisely fine-tuning ROS homeostasis, providing insights into the regulatory network of organ senescence.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"127 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The histone deacetylase RhHDA15 represses petal senescence by epigenetically regulating reactive oxygen species homeostasis in rose\",\"authors\":\"Meizhu Qin, Zhicheng Wu, Chengkun Zhang, Yunhe Jiang, Cai-Zhong Jiang, Xiaoming Sun, Junping Gao\",\"doi\":\"10.1093/plphys/kiae612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epigenetic modifications play vital roles in many biological processes. Flower senescence involves epigenetic factors that influence the chromatin state and gene expression. However, the molecular mechanism underlying the role of histone deacetylation in regulating flower senescence has not been elucidated. Here, we demonstrate that histone deacetylation is involved in flower senescence by fine-tuning reactive oxygen species (ROS) homeostasis in rose (Rosa hybrida). Our data reveal that the histone lysine deacetyltransferase RhHDA15 inhibits ROS accumulation and petal senescence by downregulating the expression of NADPH OXIDASE/RESPIRATORY BURST OXIDASE HOMOLOG (RhRboh) genes. Furthermore, the transcription factor RELATED TO ABI3/VP1 2 (RhRAV2) recruits RhHDA15 and the co-repressor TOPLESS (RhTPL) to suppress flower senescence by reducing H3 lysine 9 acetylation (H3K9ac) at the RhRbohA1/2 promoter and thus directly inhibiting precocious RhRbohA1/2 expression. Our work sheds light on an epigenetic mechanism in which histone deacetylation plays a crucial role in controlling petal senescence by precisely fine-tuning ROS homeostasis, providing insights into the regulatory network of organ senescence.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae612\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae612","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The histone deacetylase RhHDA15 represses petal senescence by epigenetically regulating reactive oxygen species homeostasis in rose
Epigenetic modifications play vital roles in many biological processes. Flower senescence involves epigenetic factors that influence the chromatin state and gene expression. However, the molecular mechanism underlying the role of histone deacetylation in regulating flower senescence has not been elucidated. Here, we demonstrate that histone deacetylation is involved in flower senescence by fine-tuning reactive oxygen species (ROS) homeostasis in rose (Rosa hybrida). Our data reveal that the histone lysine deacetyltransferase RhHDA15 inhibits ROS accumulation and petal senescence by downregulating the expression of NADPH OXIDASE/RESPIRATORY BURST OXIDASE HOMOLOG (RhRboh) genes. Furthermore, the transcription factor RELATED TO ABI3/VP1 2 (RhRAV2) recruits RhHDA15 and the co-repressor TOPLESS (RhTPL) to suppress flower senescence by reducing H3 lysine 9 acetylation (H3K9ac) at the RhRbohA1/2 promoter and thus directly inhibiting precocious RhRbohA1/2 expression. Our work sheds light on an epigenetic mechanism in which histone deacetylation plays a crucial role in controlling petal senescence by precisely fine-tuning ROS homeostasis, providing insights into the regulatory network of organ senescence.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.