Trevor Chistolini, Kyunghoon Lee, Archan Banerjee, Mohammed Alghadeer, Christian Jünger, M. Virginia P. Altoé, Chengyu Song, Sudi Chen, Feng Wang, David I. Santiago, Irfan Siddiqi
{"title":"悬浮在氮化硅膜上的超导谐振器的性能","authors":"Trevor Chistolini, Kyunghoon Lee, Archan Banerjee, Mohammed Alghadeer, Christian Jünger, M. Virginia P. Altoé, Chengyu Song, Sudi Chen, Feng Wang, David I. Santiago, Irfan Siddiqi","doi":"10.1063/5.0222680","DOIUrl":null,"url":null,"abstract":"Suspending devices on thin SiN membranes can limit their interaction with the bulk substrate and reduce parasitic capacitance to ground. While suspending devices on membranes are used in many fields including radiation detection using superconducting circuits, there has been less investigation into maximum membrane aspect ratios and achievable suspended device quality, metrics important to establish the applicable scope of the technique. Here, we investigate these metrics by fabricating superconducting coplanar waveguide resonators entirely atop thin (∼110 nm) SiN membranes, where the membrane's shortest length to thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect resonator thermalization and conduct further materials characterization. By achieving high quality superconducting circuit devices fully suspended on thin SiN membranes, our results help expand the technique's scope to potential uses including incorporating higher aspect ratio membranes for device suspension and creating larger footprint, high impedance, and high quality devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"95 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of superconducting resonators suspended on SiN membranes\",\"authors\":\"Trevor Chistolini, Kyunghoon Lee, Archan Banerjee, Mohammed Alghadeer, Christian Jünger, M. Virginia P. Altoé, Chengyu Song, Sudi Chen, Feng Wang, David I. Santiago, Irfan Siddiqi\",\"doi\":\"10.1063/5.0222680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suspending devices on thin SiN membranes can limit their interaction with the bulk substrate and reduce parasitic capacitance to ground. While suspending devices on membranes are used in many fields including radiation detection using superconducting circuits, there has been less investigation into maximum membrane aspect ratios and achievable suspended device quality, metrics important to establish the applicable scope of the technique. Here, we investigate these metrics by fabricating superconducting coplanar waveguide resonators entirely atop thin (∼110 nm) SiN membranes, where the membrane's shortest length to thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect resonator thermalization and conduct further materials characterization. By achieving high quality superconducting circuit devices fully suspended on thin SiN membranes, our results help expand the technique's scope to potential uses including incorporating higher aspect ratio membranes for device suspension and creating larger footprint, high impedance, and high quality devices.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222680\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222680","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Performance of superconducting resonators suspended on SiN membranes
Suspending devices on thin SiN membranes can limit their interaction with the bulk substrate and reduce parasitic capacitance to ground. While suspending devices on membranes are used in many fields including radiation detection using superconducting circuits, there has been less investigation into maximum membrane aspect ratios and achievable suspended device quality, metrics important to establish the applicable scope of the technique. Here, we investigate these metrics by fabricating superconducting coplanar waveguide resonators entirely atop thin (∼110 nm) SiN membranes, where the membrane's shortest length to thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect resonator thermalization and conduct further materials characterization. By achieving high quality superconducting circuit devices fully suspended on thin SiN membranes, our results help expand the technique's scope to potential uses including incorporating higher aspect ratio membranes for device suspension and creating larger footprint, high impedance, and high quality devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.