用于高性能过氧化物太阳能电池的表面质子化超小型 SnO2 量子点

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-11-12 DOI:10.1039/d4ee03193h
Wuchen Xiang, Yiheng Gao, Bobo Yuan, Shuping Xiao, Rui Wu, Yiran Wan, Zhiqiang Liu, Liang Ma, Xiang-Bai Chen, Weijun Ke, Guojia Fang, Pingli Qin
{"title":"用于高性能过氧化物太阳能电池的表面质子化超小型 SnO2 量子点","authors":"Wuchen Xiang, Yiheng Gao, Bobo Yuan, Shuping Xiao, Rui Wu, Yiran Wan, Zhiqiang Liu, Liang Ma, Xiang-Bai Chen, Weijun Ke, Guojia Fang, Pingli Qin","doi":"10.1039/d4ee03193h","DOIUrl":null,"url":null,"abstract":"SnO<small><sub>2</sub></small> electron transport layers (ETLs) have improved perovskite solar cell (PSC) efficiencies but face issues with surface protonation, leading to energy loss and instability. We developed ultra-small (2.5 nm) SnO<small><sub>2</sub></small> quantum dots (QDs) ETLs that are surface-deprotonated. These ETLs reduce interface barriers and enhance electron transfer efficiency. PSCs using these SnO<small><sub>2</sub></small> QDs achieved a champion efficiency of 25.55% and improved stability, outperforming protonated SnO<small><sub>2</sub></small> QDs. Additionally, these ETLs showed superior performance in X-ray detectors.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"13 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-deprotonated ultra-small SnO2 quantum dots for high-performance perovskite solar cells\",\"authors\":\"Wuchen Xiang, Yiheng Gao, Bobo Yuan, Shuping Xiao, Rui Wu, Yiran Wan, Zhiqiang Liu, Liang Ma, Xiang-Bai Chen, Weijun Ke, Guojia Fang, Pingli Qin\",\"doi\":\"10.1039/d4ee03193h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SnO<small><sub>2</sub></small> electron transport layers (ETLs) have improved perovskite solar cell (PSC) efficiencies but face issues with surface protonation, leading to energy loss and instability. We developed ultra-small (2.5 nm) SnO<small><sub>2</sub></small> quantum dots (QDs) ETLs that are surface-deprotonated. These ETLs reduce interface barriers and enhance electron transfer efficiency. PSCs using these SnO<small><sub>2</sub></small> QDs achieved a champion efficiency of 25.55% and improved stability, outperforming protonated SnO<small><sub>2</sub></small> QDs. Additionally, these ETLs showed superior performance in X-ray detectors.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee03193h\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03193h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化锡电子传输层(ETL)提高了过氧化物太阳能电池(PSC)的效率,但面临着表面质子化的问题,导致能量损失和不稳定性。我们开发了表面去质子化的超小(2.5 nm)二氧化锡量子点(QDs)ETL。这些 ETL 减少了界面障碍,提高了电子转移效率。使用这些二氧化锰量子点的 PSCs 的冠军效率达到 25.55%,稳定性也有所提高,优于质子化二氧化锰量子点。此外,这些 ETL 在 X 射线探测器中也表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface-deprotonated ultra-small SnO2 quantum dots for high-performance perovskite solar cells
SnO2 electron transport layers (ETLs) have improved perovskite solar cell (PSC) efficiencies but face issues with surface protonation, leading to energy loss and instability. We developed ultra-small (2.5 nm) SnO2 quantum dots (QDs) ETLs that are surface-deprotonated. These ETLs reduce interface barriers and enhance electron transfer efficiency. PSCs using these SnO2 QDs achieved a champion efficiency of 25.55% and improved stability, outperforming protonated SnO2 QDs. Additionally, these ETLs showed superior performance in X-ray detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Enhanced bipolar membrane for durable ampere-level water electrolysis Intermediate Phase In-situ Self-reconstruction of Amorphous NASICON for Long-life Solid-state Sodium Metal Batteries Inhibiting cathode dissolution and shuttling of V-O species by a polybenzimidazole hydrogel electrolyte for durable high-areal-capacity Zn-V2O5 batteries A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1