{"title":"氟化凝胶和聚合物固体电解质界面的盐解离和局部高浓度溶解","authors":"Dechao Zhang, Yuxuan Liu, Dedi Li, Shimei Li, Qi Xiong, Zhaodong Huang, Shixun Wang, Hu Hong, Jiaxiong Zhu, Haiming Lyu, Chunyi Zhi","doi":"10.1039/d4ee04078c","DOIUrl":null,"url":null,"abstract":"Low salt dissociation and unstable [Li(N, N-dimethylformamide (DMF))x]+ solvent structure in poly(vinylidene fluoride) (PVDF)-based solid polymer electrolyte (SPE) remarkably restricts the high throughput ion transport and interfacial stability. Here, we designed a hybrid electrolyte (denoted as HFGP-SE) composed of fluorinated gel solid electrolyte (FG-SE) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based solid polymer electrolyte (PVHF-SPE). We found that in the HFGP-SE, the interface of FG-SE and PVHF-SPE effectively promotes lithium salt dissociation and creates localized high-concentration (LHC) solvation structure. The developed HFGP-SE shows high ionic conductivity (0.84 mS cm-1) and a remarkably improved lithium transference number (tLi+ = 0.87). Meanwhile, the controlled LHC solvation structure formed at the interface between FG-SE and PVHF-SPE supports the formation of inorganic-rich solid electrolytes interphases (SEIs) derived from anions, allowing for stable lithium deposition and ultra-stable plating/stripping performance for over 1200 hours at a current density of 0.5 mA cm-2. Additionally, HFGP-SE supported stable cycling in 4.5 V class Li||NCM811 full cells under practical conditions, with a 50 μm thick lithium metal anode and cathodes with a mass loading of 12 mg cm-2, achieving an areal capacity >2 mAh cm-2. This work proposes a novel strategy using interfaces existing in hybrid solid electrolytes to significantly enhance lithium salt dissociation, fast ion transport, and interfacial stability of solid-state electrolytes for lithium metal batteries.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"55 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salt Dissociation and Localized High-concentration Solvation by Interface of Fluorinated Gel and Polymer Solid Electrolyte\",\"authors\":\"Dechao Zhang, Yuxuan Liu, Dedi Li, Shimei Li, Qi Xiong, Zhaodong Huang, Shixun Wang, Hu Hong, Jiaxiong Zhu, Haiming Lyu, Chunyi Zhi\",\"doi\":\"10.1039/d4ee04078c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low salt dissociation and unstable [Li(N, N-dimethylformamide (DMF))x]+ solvent structure in poly(vinylidene fluoride) (PVDF)-based solid polymer electrolyte (SPE) remarkably restricts the high throughput ion transport and interfacial stability. Here, we designed a hybrid electrolyte (denoted as HFGP-SE) composed of fluorinated gel solid electrolyte (FG-SE) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based solid polymer electrolyte (PVHF-SPE). We found that in the HFGP-SE, the interface of FG-SE and PVHF-SPE effectively promotes lithium salt dissociation and creates localized high-concentration (LHC) solvation structure. The developed HFGP-SE shows high ionic conductivity (0.84 mS cm-1) and a remarkably improved lithium transference number (tLi+ = 0.87). Meanwhile, the controlled LHC solvation structure formed at the interface between FG-SE and PVHF-SPE supports the formation of inorganic-rich solid electrolytes interphases (SEIs) derived from anions, allowing for stable lithium deposition and ultra-stable plating/stripping performance for over 1200 hours at a current density of 0.5 mA cm-2. Additionally, HFGP-SE supported stable cycling in 4.5 V class Li||NCM811 full cells under practical conditions, with a 50 μm thick lithium metal anode and cathodes with a mass loading of 12 mg cm-2, achieving an areal capacity >2 mAh cm-2. This work proposes a novel strategy using interfaces existing in hybrid solid electrolytes to significantly enhance lithium salt dissociation, fast ion transport, and interfacial stability of solid-state electrolytes for lithium metal batteries.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee04078c\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04078c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Salt Dissociation and Localized High-concentration Solvation by Interface of Fluorinated Gel and Polymer Solid Electrolyte
Low salt dissociation and unstable [Li(N, N-dimethylformamide (DMF))x]+ solvent structure in poly(vinylidene fluoride) (PVDF)-based solid polymer electrolyte (SPE) remarkably restricts the high throughput ion transport and interfacial stability. Here, we designed a hybrid electrolyte (denoted as HFGP-SE) composed of fluorinated gel solid electrolyte (FG-SE) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based solid polymer electrolyte (PVHF-SPE). We found that in the HFGP-SE, the interface of FG-SE and PVHF-SPE effectively promotes lithium salt dissociation and creates localized high-concentration (LHC) solvation structure. The developed HFGP-SE shows high ionic conductivity (0.84 mS cm-1) and a remarkably improved lithium transference number (tLi+ = 0.87). Meanwhile, the controlled LHC solvation structure formed at the interface between FG-SE and PVHF-SPE supports the formation of inorganic-rich solid electrolytes interphases (SEIs) derived from anions, allowing for stable lithium deposition and ultra-stable plating/stripping performance for over 1200 hours at a current density of 0.5 mA cm-2. Additionally, HFGP-SE supported stable cycling in 4.5 V class Li||NCM811 full cells under practical conditions, with a 50 μm thick lithium metal anode and cathodes with a mass loading of 12 mg cm-2, achieving an areal capacity >2 mAh cm-2. This work proposes a novel strategy using interfaces existing in hybrid solid electrolytes to significantly enhance lithium salt dissociation, fast ion transport, and interfacial stability of solid-state electrolytes for lithium metal batteries.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).