Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu
{"title":"通过聚合物纳米复合材料中金属有机框架的链接工程推进高温静电储能","authors":"Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu","doi":"10.1039/d4ee04085f","DOIUrl":null,"url":null,"abstract":"High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites\",\"authors\":\"Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu\",\"doi\":\"10.1039/d4ee04085f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee04085f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04085f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites
High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.