{"title":"内酯的溶剂依赖性序列控制共聚:从强韧塑料到韧性弹性体的材料特性定制","authors":"Chaoqun Weng, Xiao Li, Xiaoyan Tang","doi":"10.1002/anie.202415388","DOIUrl":null,"url":null,"abstract":"Copolymerization stands as a versatile and potent method for tailoring polymer properties by adjusting structural unit composition and sequence distribution. However, achieving sequence-controlled copolymerization in a one-step and one-pot process remains challenging. This study introduces a solvent-dependent sequence-controlled copolymerization strategy to produce block and statistical copolyesters from 4-phenyl-2-oxabicyclo[2.1.1]hexan-3-one (4Ph-BL) and ε-caprolactone (ε-CL). The distinct kinetics of the two monomers enable the facile synthesis of diblock and triblock copolyesters, PCL-b-P(4Ph-BL) and P(4Ph-BL)-b-PCL-b-P(4Ph-BL), in non-coordinating solvents, such as dichloromethane and toluene. Conversely, coordinating solvents like tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,4-dioxane, and 1,2-dimethoxyethane facilitate frequent transesterifications, yielding statistical copolyesters P[CL-stat-(4Ph-BL)] with varying ratios of heterosequences. Density functional theory (DFT) calculations confirmed that coordinating solvents stabilize the transition state for transesterification, thereby validating their role in triggering this process. By varying the microstructures and compositions, the resultant copolyesters display tunable thermal and mechanical properties, evolving from robust plastics with an ultimate tensile strength of up to 46.3 ± 3.1 MPa to tough elastomers with >99.3% elastic recovery. All the copolyesters exhibit remarkable thermal stability (Td,5% = 376 °C) and maintain desirable chemical circularity (>92%), supporting a closed-loop life cycle for sustainable material economy.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent-Dependent Sequence-Controlled Copolymerization of Lactones: Tailoring Material Properties from Robust Plastics to Tough Elastomers\",\"authors\":\"Chaoqun Weng, Xiao Li, Xiaoyan Tang\",\"doi\":\"10.1002/anie.202415388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copolymerization stands as a versatile and potent method for tailoring polymer properties by adjusting structural unit composition and sequence distribution. However, achieving sequence-controlled copolymerization in a one-step and one-pot process remains challenging. This study introduces a solvent-dependent sequence-controlled copolymerization strategy to produce block and statistical copolyesters from 4-phenyl-2-oxabicyclo[2.1.1]hexan-3-one (4Ph-BL) and ε-caprolactone (ε-CL). The distinct kinetics of the two monomers enable the facile synthesis of diblock and triblock copolyesters, PCL-b-P(4Ph-BL) and P(4Ph-BL)-b-PCL-b-P(4Ph-BL), in non-coordinating solvents, such as dichloromethane and toluene. Conversely, coordinating solvents like tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,4-dioxane, and 1,2-dimethoxyethane facilitate frequent transesterifications, yielding statistical copolyesters P[CL-stat-(4Ph-BL)] with varying ratios of heterosequences. Density functional theory (DFT) calculations confirmed that coordinating solvents stabilize the transition state for transesterification, thereby validating their role in triggering this process. By varying the microstructures and compositions, the resultant copolyesters display tunable thermal and mechanical properties, evolving from robust plastics with an ultimate tensile strength of up to 46.3 ± 3.1 MPa to tough elastomers with >99.3% elastic recovery. All the copolyesters exhibit remarkable thermal stability (Td,5% = 376 °C) and maintain desirable chemical circularity (>92%), supporting a closed-loop life cycle for sustainable material economy.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202415388\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415388","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solvent-Dependent Sequence-Controlled Copolymerization of Lactones: Tailoring Material Properties from Robust Plastics to Tough Elastomers
Copolymerization stands as a versatile and potent method for tailoring polymer properties by adjusting structural unit composition and sequence distribution. However, achieving sequence-controlled copolymerization in a one-step and one-pot process remains challenging. This study introduces a solvent-dependent sequence-controlled copolymerization strategy to produce block and statistical copolyesters from 4-phenyl-2-oxabicyclo[2.1.1]hexan-3-one (4Ph-BL) and ε-caprolactone (ε-CL). The distinct kinetics of the two monomers enable the facile synthesis of diblock and triblock copolyesters, PCL-b-P(4Ph-BL) and P(4Ph-BL)-b-PCL-b-P(4Ph-BL), in non-coordinating solvents, such as dichloromethane and toluene. Conversely, coordinating solvents like tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,4-dioxane, and 1,2-dimethoxyethane facilitate frequent transesterifications, yielding statistical copolyesters P[CL-stat-(4Ph-BL)] with varying ratios of heterosequences. Density functional theory (DFT) calculations confirmed that coordinating solvents stabilize the transition state for transesterification, thereby validating their role in triggering this process. By varying the microstructures and compositions, the resultant copolyesters display tunable thermal and mechanical properties, evolving from robust plastics with an ultimate tensile strength of up to 46.3 ± 3.1 MPa to tough elastomers with >99.3% elastic recovery. All the copolyesters exhibit remarkable thermal stability (Td,5% = 376 °C) and maintain desirable chemical circularity (>92%), supporting a closed-loop life cycle for sustainable material economy.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.