电化学调制表面等离子体波用于鉴定和检测 DNA 传感器

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-11-12 DOI:10.1039/d4an01164c
Anil Sharma, Thomas Hulse, Aymen H. Qatamin, Monica Moreno, Klester S. Souza, Marcelo B. Pereira, Fabricio S. Campos, Leandro B. Carneiro, Antonio M. H. de Andrade, Paulo M. Roehe, Flavio Horowitz, Sergio B. Mendes
{"title":"电化学调制表面等离子体波用于鉴定和检测 DNA 传感器","authors":"Anil Sharma, Thomas Hulse, Aymen H. Qatamin, Monica Moreno, Klester S. Souza, Marcelo B. Pereira, Fabricio S. Campos, Leandro B. Carneiro, Antonio M. H. de Andrade, Paulo M. Roehe, Flavio Horowitz, Sergio B. Mendes","doi":"10.1039/d4an01164c","DOIUrl":null,"url":null,"abstract":"This work reports on a comparative analysis of electrical and optical measurements for structural characterization and for assessing signal transduction performance of a redox-labeled DNA-based sensing platform. We conducted complementary investigations employing conventional electrochemical techniques with electric current measurements in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and confronted those results with optical measurements using surface plasmon waves while the redox assembly was undergoing similar electrochemical modulation as in the electrical CV and EIS measurements. The specific sensor configuration deployed here was composed of a methylene blue (MB)-modified single-stranded DNA (ssDNA) signaling probe and an unlabeled capture ssDNA probe that complements the signaling probe. Two types of signaling probes were employed: one with MB attached to the 3′ end, which positions the redox marker closer to the electrode surface upon hybridization with the capture probe, and the other with MB attached to the 5′ end, which places the redox marker farther from the electrode surface. For each molecular assembly and for each electrochemical modulation protocol, both the electrical and optical experimental data were quantitatively analyzed to determine the surface density of electro-active species and the rate of electron transfer between the redox marker and the electrode surface. Our experimental results highlight the consistency of the confronted methodologies and indicate that optical impedance spectroscopy utilizing electrochemically modulated surface plasmon waves, which is a transduction protocol immune from non-faradaic interferents that invariably are present in the electrical methodology, can provide a powerful route for developing a redox-labeled DNA-hybridization biosensing strategy.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"43 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemically modulated surface plasmon waves for characterization and interrogation of DNA-based sensors\",\"authors\":\"Anil Sharma, Thomas Hulse, Aymen H. Qatamin, Monica Moreno, Klester S. Souza, Marcelo B. Pereira, Fabricio S. Campos, Leandro B. Carneiro, Antonio M. H. de Andrade, Paulo M. Roehe, Flavio Horowitz, Sergio B. Mendes\",\"doi\":\"10.1039/d4an01164c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports on a comparative analysis of electrical and optical measurements for structural characterization and for assessing signal transduction performance of a redox-labeled DNA-based sensing platform. We conducted complementary investigations employing conventional electrochemical techniques with electric current measurements in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and confronted those results with optical measurements using surface plasmon waves while the redox assembly was undergoing similar electrochemical modulation as in the electrical CV and EIS measurements. The specific sensor configuration deployed here was composed of a methylene blue (MB)-modified single-stranded DNA (ssDNA) signaling probe and an unlabeled capture ssDNA probe that complements the signaling probe. Two types of signaling probes were employed: one with MB attached to the 3′ end, which positions the redox marker closer to the electrode surface upon hybridization with the capture probe, and the other with MB attached to the 5′ end, which places the redox marker farther from the electrode surface. For each molecular assembly and for each electrochemical modulation protocol, both the electrical and optical experimental data were quantitatively analyzed to determine the surface density of electro-active species and the rate of electron transfer between the redox marker and the electrode surface. Our experimental results highlight the consistency of the confronted methodologies and indicate that optical impedance spectroscopy utilizing electrochemically modulated surface plasmon waves, which is a transduction protocol immune from non-faradaic interferents that invariably are present in the electrical methodology, can provide a powerful route for developing a redox-labeled DNA-hybridization biosensing strategy.\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4an01164c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01164c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告对电学和光学测量进行了比较分析,以确定基于氧化还原标记 DNA 的传感平台的结构特征并评估其信号传导性能。我们采用传统的电化学技术,在循环伏安法(CV)和电化学阻抗谱法(EIS)中进行电流测量,并将这些结果与使用表面等离子体波的光学测量结果进行对比,同时氧化还原组件也在进行与 CV 和 EIS 电测量类似的电化学调制。这里采用的特定传感器配置由亚甲蓝(MB)修饰的单链 DNA(ssDNA)信号探针和未标记的捕获 ssDNA 探针组成,后者是信号探针的补充。我们使用了两种信号探针:一种探针的 3′端附有甲基溴,在与捕获探针杂交时,可使氧化还原标记物更靠近电极表面;另一种探针的 5′端附有甲基溴,可使氧化还原标记物远离电极表面。对于每种分子组装和每种电化学调制方案,我们都对电学和光学实验数据进行了定量分析,以确定电活性物种的表面密度以及氧化还原标记与电极表面之间的电子转移率。我们的实验结果凸显了两种方法的一致性,并表明利用电化学调制表面等离子体波的光学阻抗光谱法是一种不受电学方法中必然存在的非法拉第干扰因素影响的传导方案,它可以为开发氧化还原标记 DNA 杂交生物传感策略提供一条强有力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemically modulated surface plasmon waves for characterization and interrogation of DNA-based sensors
This work reports on a comparative analysis of electrical and optical measurements for structural characterization and for assessing signal transduction performance of a redox-labeled DNA-based sensing platform. We conducted complementary investigations employing conventional electrochemical techniques with electric current measurements in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and confronted those results with optical measurements using surface plasmon waves while the redox assembly was undergoing similar electrochemical modulation as in the electrical CV and EIS measurements. The specific sensor configuration deployed here was composed of a methylene blue (MB)-modified single-stranded DNA (ssDNA) signaling probe and an unlabeled capture ssDNA probe that complements the signaling probe. Two types of signaling probes were employed: one with MB attached to the 3′ end, which positions the redox marker closer to the electrode surface upon hybridization with the capture probe, and the other with MB attached to the 5′ end, which places the redox marker farther from the electrode surface. For each molecular assembly and for each electrochemical modulation protocol, both the electrical and optical experimental data were quantitatively analyzed to determine the surface density of electro-active species and the rate of electron transfer between the redox marker and the electrode surface. Our experimental results highlight the consistency of the confronted methodologies and indicate that optical impedance spectroscopy utilizing electrochemically modulated surface plasmon waves, which is a transduction protocol immune from non-faradaic interferents that invariably are present in the electrical methodology, can provide a powerful route for developing a redox-labeled DNA-hybridization biosensing strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
Nanocarbon eco-hydrogel kit: on-site visual metal ion sensing and dye cleanup, advancing the circular economy in environmental remediation Length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu²⁺ β-Cyclodextrin Modified Imidazole Probe Specific Recognition of Organic Acids Based on Nuclear Magnetic Resonance Development and validation of a one-step SMN assay for genetic testing in spinal muscular atrophy via MALDI-TOF MS Stationary Phase Effects in Hydrophilic Interaction Liquid Chromatographic Separation of Oligonucleotides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1