{"title":"利用脱困电荷影响短时介电响应诊断电力变压器绝缘","authors":"Somesh Ganguly;Arijit Baral;Sivaji Chakravorti","doi":"10.1109/TIM.2024.3488154","DOIUrl":null,"url":null,"abstract":"The polarization and depolarization current (PDC) gets affected by de-trapped charges. Analysis of such currents leads to an inaccurate assessment of the transformer insulation condition. Existing insulation model-based methods assume the polarization current to be free of the de-trapped charges. This assumption does not always hold good; moreover, most of the time series forecasting methods available in the literature are based on this assumption. A novel method has been proposed for obtaining the depolarization current, which is less affected by the de-trapping current, from short-duration de-trapped charge affected polarization current. The result presented in the article demonstrates that the use of data that is less affected by de-trapped charges leads to reliable diagnosis. The proposed analysis has been formulated and tested on data collected from various real-life transformers.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-11"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Transformer Insulation Diagnosis Using De-Trapped Charge Affected Short-Duration Dielectric Response\",\"authors\":\"Somesh Ganguly;Arijit Baral;Sivaji Chakravorti\",\"doi\":\"10.1109/TIM.2024.3488154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polarization and depolarization current (PDC) gets affected by de-trapped charges. Analysis of such currents leads to an inaccurate assessment of the transformer insulation condition. Existing insulation model-based methods assume the polarization current to be free of the de-trapped charges. This assumption does not always hold good; moreover, most of the time series forecasting methods available in the literature are based on this assumption. A novel method has been proposed for obtaining the depolarization current, which is less affected by the de-trapping current, from short-duration de-trapped charge affected polarization current. The result presented in the article demonstrates that the use of data that is less affected by de-trapped charges leads to reliable diagnosis. The proposed analysis has been formulated and tested on data collected from various real-life transformers.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10739352/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10739352/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Power Transformer Insulation Diagnosis Using De-Trapped Charge Affected Short-Duration Dielectric Response
The polarization and depolarization current (PDC) gets affected by de-trapped charges. Analysis of such currents leads to an inaccurate assessment of the transformer insulation condition. Existing insulation model-based methods assume the polarization current to be free of the de-trapped charges. This assumption does not always hold good; moreover, most of the time series forecasting methods available in the literature are based on this assumption. A novel method has been proposed for obtaining the depolarization current, which is less affected by the de-trapping current, from short-duration de-trapped charge affected polarization current. The result presented in the article demonstrates that the use of data that is less affected by de-trapped charges leads to reliable diagnosis. The proposed analysis has been formulated and tested on data collected from various real-life transformers.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.