Alexandra Pongracz, David Wårlind, Paul A. Miller, Adrian Gustafson, Sam S. Rabin, Frans-Jan W. Parmentier
{"title":"气候变暖导致的积雪深度对比推动了整个北极-北方地区土壤碳流失的未来轨迹","authors":"Alexandra Pongracz, David Wårlind, Paul A. Miller, Adrian Gustafson, Sam S. Rabin, Frans-Jan W. Parmentier","doi":"10.1038/s43247-024-01838-1","DOIUrl":null,"url":null,"abstract":"The Arctic-Boreal region is projected to experience spatially divergent trends in snow depth following climate change. However, the impact of these spatial trends has remained largely unexplored, despite potentially large consequences for the carbon cycle. To address this knowledge gap, we forced a customised arctic version of the dynamic vegetation model LPJ-GUESS with daily CMIP6 outputs from a global climate model (MRI-ESM2-0) under three climate scenarios. We find that snow depths increased the most in the coldest, northernmost regions, insulating the soil, which led to increased heterotrophic respiration and reduced carbon residence times. We emphasise the need for improved projections of future snow depth - in particular diverging trends across landscapes - to more accurately simulate the strength of Arctic-Boreal carbon feedbacks and their impact on global climate. In a warming climate, snow depth increases fastest in the coldest Arctic regions, which leads to enhanced respiration and reduced carbon residence times compared to less cold areas, suggest simulations of climate-change scenarios with an Arctic-specific vegetation model.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-7"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01838-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Warming-induced contrasts in snow depth drive the future trajectory of soil carbon loss across the Arctic-Boreal region\",\"authors\":\"Alexandra Pongracz, David Wårlind, Paul A. Miller, Adrian Gustafson, Sam S. Rabin, Frans-Jan W. Parmentier\",\"doi\":\"10.1038/s43247-024-01838-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arctic-Boreal region is projected to experience spatially divergent trends in snow depth following climate change. However, the impact of these spatial trends has remained largely unexplored, despite potentially large consequences for the carbon cycle. To address this knowledge gap, we forced a customised arctic version of the dynamic vegetation model LPJ-GUESS with daily CMIP6 outputs from a global climate model (MRI-ESM2-0) under three climate scenarios. We find that snow depths increased the most in the coldest, northernmost regions, insulating the soil, which led to increased heterotrophic respiration and reduced carbon residence times. We emphasise the need for improved projections of future snow depth - in particular diverging trends across landscapes - to more accurately simulate the strength of Arctic-Boreal carbon feedbacks and their impact on global climate. In a warming climate, snow depth increases fastest in the coldest Arctic regions, which leads to enhanced respiration and reduced carbon residence times compared to less cold areas, suggest simulations of climate-change scenarios with an Arctic-specific vegetation model.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01838-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01838-1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01838-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Warming-induced contrasts in snow depth drive the future trajectory of soil carbon loss across the Arctic-Boreal region
The Arctic-Boreal region is projected to experience spatially divergent trends in snow depth following climate change. However, the impact of these spatial trends has remained largely unexplored, despite potentially large consequences for the carbon cycle. To address this knowledge gap, we forced a customised arctic version of the dynamic vegetation model LPJ-GUESS with daily CMIP6 outputs from a global climate model (MRI-ESM2-0) under three climate scenarios. We find that snow depths increased the most in the coldest, northernmost regions, insulating the soil, which led to increased heterotrophic respiration and reduced carbon residence times. We emphasise the need for improved projections of future snow depth - in particular diverging trends across landscapes - to more accurately simulate the strength of Arctic-Boreal carbon feedbacks and their impact on global climate. In a warming climate, snow depth increases fastest in the coldest Arctic regions, which leads to enhanced respiration and reduced carbon residence times compared to less cold areas, suggest simulations of climate-change scenarios with an Arctic-specific vegetation model.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.