碳酸盐相关有机物在亚热带海草草甸中的独特生物地球化学作用

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-11-08 DOI:10.1038/s43247-024-01832-7
Mary A. Zeller, Bryce R. Van Dam, Christian Lopes, Amy M. McKenna, Christopher L. Osburn, James W. Fourqurean, John S. Kominoski, Michael Ernst Böttcher
{"title":"碳酸盐相关有机物在亚热带海草草甸中的独特生物地球化学作用","authors":"Mary A. Zeller, Bryce R. Van Dam, Christian Lopes, Amy M. McKenna, Christopher L. Osburn, James W. Fourqurean, John S. Kominoski, Michael Ernst Böttcher","doi":"10.1038/s43247-024-01832-7","DOIUrl":null,"url":null,"abstract":"The particulate organic matter buried in carbonate-rich seagrass ecosystems is an important blue carbon reservoir. While carbonate sediments are affected by alkalinity produced or consumed in seagrass-mediated biogeochemical processes, little is known about the corresponding impact on organic matter. A portion of particulate organic matter is carbonate-associated organic matter. Here, we explore its biogeochemistry in a carbonate seagrass meadow in central Florida Bay, USA. We couple inorganic stable isotope analyses (δ34S, δ18O) with a molecular characterization of dissolved and carbonate associated organic matter (21 tesla Fourier-transform ion cyclotron resonance mass spectrometry). We find that carbonate-associated molecular formulas are highly sulfurized compared to surface water dissolved organic matter, with multiple sulfurization pathways at play. Furthermore, 97% of the formula abundance of surface water dissolved organic matter is shared with carbonate-associated organic matter, indicating connectivity between these two pools. We estimate that 9.2% of the particulate organic matter is carbonate-associated, and readily exchangeable with the broader aquatic system as the sediment dissolves and reprecipitates. Seagrass-mediated dissolution and reprecipitation of carbonate sediments have consequences for sedimentary organic matter cycling in terms of sulfur content and coupling to dissolved pools, according to an analysis using inorganic stable isotopes combined with molecular characterization.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01832-7.pdf","citationCount":"0","resultStr":"{\"title\":\"The unique biogeochemical role of carbonate-associated organic matter in a subtropical seagrass meadow\",\"authors\":\"Mary A. Zeller, Bryce R. Van Dam, Christian Lopes, Amy M. McKenna, Christopher L. Osburn, James W. Fourqurean, John S. Kominoski, Michael Ernst Böttcher\",\"doi\":\"10.1038/s43247-024-01832-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particulate organic matter buried in carbonate-rich seagrass ecosystems is an important blue carbon reservoir. While carbonate sediments are affected by alkalinity produced or consumed in seagrass-mediated biogeochemical processes, little is known about the corresponding impact on organic matter. A portion of particulate organic matter is carbonate-associated organic matter. Here, we explore its biogeochemistry in a carbonate seagrass meadow in central Florida Bay, USA. We couple inorganic stable isotope analyses (δ34S, δ18O) with a molecular characterization of dissolved and carbonate associated organic matter (21 tesla Fourier-transform ion cyclotron resonance mass spectrometry). We find that carbonate-associated molecular formulas are highly sulfurized compared to surface water dissolved organic matter, with multiple sulfurization pathways at play. Furthermore, 97% of the formula abundance of surface water dissolved organic matter is shared with carbonate-associated organic matter, indicating connectivity between these two pools. We estimate that 9.2% of the particulate organic matter is carbonate-associated, and readily exchangeable with the broader aquatic system as the sediment dissolves and reprecipitates. Seagrass-mediated dissolution and reprecipitation of carbonate sediments have consequences for sedimentary organic matter cycling in terms of sulfur content and coupling to dissolved pools, according to an analysis using inorganic stable isotopes combined with molecular characterization.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01832-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01832-7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01832-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

富含碳酸盐的海草生态系统中埋藏的微粒有机物是一个重要的蓝碳库。虽然碳酸盐沉积物会受到海草介导的生物地球化学过程中产生或消耗的碱度的影响,但人们对有机物受到的相应影响却知之甚少。颗粒有机物中有一部分是碳酸盐相关有机物。在这里,我们探讨了美国佛罗里达湾中部碳酸盐海草草甸的生物地球化学。我们将无机稳定同位素分析(δ34S、δ18O)与溶解有机物和碳酸盐相关有机物的分子特征分析(21 特斯拉傅立叶变换离子回旋共振质谱)结合起来。我们发现,与地表水溶解有机物相比,碳酸盐相关分子式硫化程度很高,有多种硫化途径。此外,97%的地表水溶解有机物分子式丰度与碳酸盐相关有机物分子式丰度相同,这表明这两种有机物之间存在联系。我们估计,9.2% 的颗粒有机物与碳酸盐有关,随着沉积物的溶解和再沉积,很容易与更广泛的水生系统进行交换。根据无机稳定同位素结合分子特征的分析,海草介导的碳酸盐沉积物溶解和再沉淀对沉积有机物循环的硫含量和与溶解池的耦合有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The unique biogeochemical role of carbonate-associated organic matter in a subtropical seagrass meadow
The particulate organic matter buried in carbonate-rich seagrass ecosystems is an important blue carbon reservoir. While carbonate sediments are affected by alkalinity produced or consumed in seagrass-mediated biogeochemical processes, little is known about the corresponding impact on organic matter. A portion of particulate organic matter is carbonate-associated organic matter. Here, we explore its biogeochemistry in a carbonate seagrass meadow in central Florida Bay, USA. We couple inorganic stable isotope analyses (δ34S, δ18O) with a molecular characterization of dissolved and carbonate associated organic matter (21 tesla Fourier-transform ion cyclotron resonance mass spectrometry). We find that carbonate-associated molecular formulas are highly sulfurized compared to surface water dissolved organic matter, with multiple sulfurization pathways at play. Furthermore, 97% of the formula abundance of surface water dissolved organic matter is shared with carbonate-associated organic matter, indicating connectivity between these two pools. We estimate that 9.2% of the particulate organic matter is carbonate-associated, and readily exchangeable with the broader aquatic system as the sediment dissolves and reprecipitates. Seagrass-mediated dissolution and reprecipitation of carbonate sediments have consequences for sedimentary organic matter cycling in terms of sulfur content and coupling to dissolved pools, according to an analysis using inorganic stable isotopes combined with molecular characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
National ecosystem restoration pledges are mismatched with social-ecological enabling conditions A conceptual model explaining spatial variation in soil nitrous oxide emissions in agricultural fields Atlantic Meridional Overturning Circulation slowdown modulates wind-driven circulations in a warmer climate Provincial inequalities in life cycle carbon dioxide emissions and air pollutants from electric vehicles in China The climatic pattern of East Asia shifted in response to cratonic thinning in the Early Cretaceous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1