Laura Cangini, Haofeng Huang, Changhao Zhao, Jurij Koruza, Ke Wang, Jürgen Rödel, Lovro Fulanović
{"title":"K0.5Na0.5NbO3 压电陶瓷在大功率驱动下的铜硬化及其温度依赖性","authors":"Laura Cangini, Haofeng Huang, Changhao Zhao, Jurij Koruza, Ke Wang, Jürgen Rödel, Lovro Fulanović","doi":"10.1016/j.jmat.2024.100962","DOIUrl":null,"url":null,"abstract":"This study investigates the relationship between the electro-mechanical properties of Cu-doped potassium sodium niobate (KNN) piezoceramics driven at high vibration velocities and their structural origins. Intrinsic and extrinsic contributions to the dynamic strain were quantified at high-power resonance conditions by <em>in-situ</em> high-energy X-ray diffraction. These contributions were correlated to the observed sub-coercive dielectric and piezoelectric responses. Cu doping impairs extrinsic contributions of KNN due to the movement of non-180° domains, akin to acceptor-doped hard PZT, reducing the fraction of transverse strain originating from non-180° domain wall motion over the total strain of 5% at 0.8 m/s. Therefore, the performance of Cu-doped KNN and PZT were found to be comparable. Both systems exhibit a high mechanical quality factor at low vibration velocity, which decreases at high displacement rates.Additionally, the temperature dependence of electromechanical properties for different Cu doping amounts was investigated. In particular, the mechanical quality factor at the vibration velocity of 1 m/s in a temperature range of –40 °C to 140 °C was studied. According to the findings, the composition doped with 0.5% Cu exhibited a stable vibration at 1 m/s, with only 10% variation in the mechanical quality factor between 20 °C and 140 °C.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"216 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardening of K0.5Na0.5NbO3 piezoceramics with Cu and the temperature dependence in high-power drive\",\"authors\":\"Laura Cangini, Haofeng Huang, Changhao Zhao, Jurij Koruza, Ke Wang, Jürgen Rödel, Lovro Fulanović\",\"doi\":\"10.1016/j.jmat.2024.100962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the relationship between the electro-mechanical properties of Cu-doped potassium sodium niobate (KNN) piezoceramics driven at high vibration velocities and their structural origins. Intrinsic and extrinsic contributions to the dynamic strain were quantified at high-power resonance conditions by <em>in-situ</em> high-energy X-ray diffraction. These contributions were correlated to the observed sub-coercive dielectric and piezoelectric responses. Cu doping impairs extrinsic contributions of KNN due to the movement of non-180° domains, akin to acceptor-doped hard PZT, reducing the fraction of transverse strain originating from non-180° domain wall motion over the total strain of 5% at 0.8 m/s. Therefore, the performance of Cu-doped KNN and PZT were found to be comparable. Both systems exhibit a high mechanical quality factor at low vibration velocity, which decreases at high displacement rates.Additionally, the temperature dependence of electromechanical properties for different Cu doping amounts was investigated. In particular, the mechanical quality factor at the vibration velocity of 1 m/s in a temperature range of –40 °C to 140 °C was studied. According to the findings, the composition doped with 0.5% Cu exhibited a stable vibration at 1 m/s, with only 10% variation in the mechanical quality factor between 20 °C and 140 °C.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2024.100962\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100962","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hardening of K0.5Na0.5NbO3 piezoceramics with Cu and the temperature dependence in high-power drive
This study investigates the relationship between the electro-mechanical properties of Cu-doped potassium sodium niobate (KNN) piezoceramics driven at high vibration velocities and their structural origins. Intrinsic and extrinsic contributions to the dynamic strain were quantified at high-power resonance conditions by in-situ high-energy X-ray diffraction. These contributions were correlated to the observed sub-coercive dielectric and piezoelectric responses. Cu doping impairs extrinsic contributions of KNN due to the movement of non-180° domains, akin to acceptor-doped hard PZT, reducing the fraction of transverse strain originating from non-180° domain wall motion over the total strain of 5% at 0.8 m/s. Therefore, the performance of Cu-doped KNN and PZT were found to be comparable. Both systems exhibit a high mechanical quality factor at low vibration velocity, which decreases at high displacement rates.Additionally, the temperature dependence of electromechanical properties for different Cu doping amounts was investigated. In particular, the mechanical quality factor at the vibration velocity of 1 m/s in a temperature range of –40 °C to 140 °C was studied. According to the findings, the composition doped with 0.5% Cu exhibited a stable vibration at 1 m/s, with only 10% variation in the mechanical quality factor between 20 °C and 140 °C.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.