{"title":"自吸附分子钝化界面可实现高效稳定的锂金属电池","authors":"Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou","doi":"10.1039/d4ee02903h","DOIUrl":null,"url":null,"abstract":"Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-adsorption molecule passivated interface enables efficient and stable lithium metal batteries\",\"authors\":\"Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou\",\"doi\":\"10.1039/d4ee02903h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee02903h\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee02903h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A self-adsorption molecule passivated interface enables efficient and stable lithium metal batteries
Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).