Junwu Xiong, Chang Pu, Zhe Qian, Jiapei Yi, Kang Wang, Chi Zhang, Wei Liu, Wei Chen, Li Xu, Shihua Qi, Zulin Zhang, Hao Zhang, Kevin C. Jones
{"title":"用于原位测量水体中新烟碱类杀虫剂 (NNIs) 的薄膜扩散梯度 (DGT) 技术","authors":"Junwu Xiong, Chang Pu, Zhe Qian, Jiapei Yi, Kang Wang, Chi Zhang, Wei Liu, Wei Chen, Li Xu, Shihua Qi, Zulin Zhang, Hao Zhang, Kevin C. Jones","doi":"10.1016/j.watres.2024.122772","DOIUrl":null,"url":null,"abstract":"Neonicotinoid insecticides (NNIs) are among the most widely-used insecticides, although their threat to non-target organisms has attracted attention in recent years. In this study, a diffusive gradient in thin-films (DGT) passive sampling technique was developed for <em>in situ</em> monitoring of time-weighted average (TWA) concentrations of NNIs in groundwater and wastewater. Systematic studies demonstrated that DGT with HLB as binding gels (HLB-DGT) is suitable for quantitative sampling of NNIs under a wide range of conditions, independent of pH (5–9.5), ionic strength (0.001–0.5 M) and dissolved organic matter (0–10 mg/L). The HLB-DGT performance was also independent of the typical groundwater ionic environments. The thicknesses of <em>in-situ</em> measured diffusive boundary layer were 0.35 and 0.25 mm in the groundwater and effluent, respectively. HLB-DGT can provide TWA concentrations over 14–18 days’ deployment with linear uptake in both groundwater and wastewater. Concentrations and occurrence patterns of NNIs obtained by HLB-DGT were consistent with those measured from grab samples. The median TWA concentration of NNIs was 4.42 ng/L in water from the largest urban lake of China (the Tangxun Lake) in winter, with wastewater discharge being the main potential source. The reliability and stability of the HLB-DGT for measuring NNIs in the groundwater and surface water were confirmed and can be used to improve understanding of the occurrence and fate of NNIs in aquatic environment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"34 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusive Gradients in Thin-films (DGT) for in situ Measurement of Neonicotinoid Insecticides (NNIs) in Waters\",\"authors\":\"Junwu Xiong, Chang Pu, Zhe Qian, Jiapei Yi, Kang Wang, Chi Zhang, Wei Liu, Wei Chen, Li Xu, Shihua Qi, Zulin Zhang, Hao Zhang, Kevin C. Jones\",\"doi\":\"10.1016/j.watres.2024.122772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neonicotinoid insecticides (NNIs) are among the most widely-used insecticides, although their threat to non-target organisms has attracted attention in recent years. In this study, a diffusive gradient in thin-films (DGT) passive sampling technique was developed for <em>in situ</em> monitoring of time-weighted average (TWA) concentrations of NNIs in groundwater and wastewater. Systematic studies demonstrated that DGT with HLB as binding gels (HLB-DGT) is suitable for quantitative sampling of NNIs under a wide range of conditions, independent of pH (5–9.5), ionic strength (0.001–0.5 M) and dissolved organic matter (0–10 mg/L). The HLB-DGT performance was also independent of the typical groundwater ionic environments. The thicknesses of <em>in-situ</em> measured diffusive boundary layer were 0.35 and 0.25 mm in the groundwater and effluent, respectively. HLB-DGT can provide TWA concentrations over 14–18 days’ deployment with linear uptake in both groundwater and wastewater. Concentrations and occurrence patterns of NNIs obtained by HLB-DGT were consistent with those measured from grab samples. The median TWA concentration of NNIs was 4.42 ng/L in water from the largest urban lake of China (the Tangxun Lake) in winter, with wastewater discharge being the main potential source. The reliability and stability of the HLB-DGT for measuring NNIs in the groundwater and surface water were confirmed and can be used to improve understanding of the occurrence and fate of NNIs in aquatic environment.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122772\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122772","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Diffusive Gradients in Thin-films (DGT) for in situ Measurement of Neonicotinoid Insecticides (NNIs) in Waters
Neonicotinoid insecticides (NNIs) are among the most widely-used insecticides, although their threat to non-target organisms has attracted attention in recent years. In this study, a diffusive gradient in thin-films (DGT) passive sampling technique was developed for in situ monitoring of time-weighted average (TWA) concentrations of NNIs in groundwater and wastewater. Systematic studies demonstrated that DGT with HLB as binding gels (HLB-DGT) is suitable for quantitative sampling of NNIs under a wide range of conditions, independent of pH (5–9.5), ionic strength (0.001–0.5 M) and dissolved organic matter (0–10 mg/L). The HLB-DGT performance was also independent of the typical groundwater ionic environments. The thicknesses of in-situ measured diffusive boundary layer were 0.35 and 0.25 mm in the groundwater and effluent, respectively. HLB-DGT can provide TWA concentrations over 14–18 days’ deployment with linear uptake in both groundwater and wastewater. Concentrations and occurrence patterns of NNIs obtained by HLB-DGT were consistent with those measured from grab samples. The median TWA concentration of NNIs was 4.42 ng/L in water from the largest urban lake of China (the Tangxun Lake) in winter, with wastewater discharge being the main potential source. The reliability and stability of the HLB-DGT for measuring NNIs in the groundwater and surface water were confirmed and can be used to improve understanding of the occurrence and fate of NNIs in aquatic environment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.