{"title":"揭示废木质素掺氮多孔碳去除六价铬的促进机制。","authors":"Huirong Zhang, Yi Shen, Xiaokai Shi, Jinlei Cui, Baofeng Wang, Yanxia Guo, Dongke Zhang, Fangqin Cheng","doi":"10.1016/j.scitotenv.2024.177426","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent environmental pollution by heavy metals, particularly Cr (VI), poses significant risks to ecosystems and human health due to its high toxicity and bioaccumulation potential. The development of high-performance, cost-effective adsorbents from sustainable materials remains a critical challenge in the field of Cr (VI) remediation. This study investigates the influence of pyrrolic-N (N-5) within nitrogen-doped hierarchical porous carbon (N-HPC) on its adsorption capacity. Results indicate that N-HPC variants with a higher N-5 content exhibit superior adsorption abilities. The optimal sample demonstrated an exceptional adsorption capacity of 386.2 mg/g for Cr (VI). Even after seven regeneration cycles, this N-HPC variant maintained a remarkable 77.8 % removal efficiency for Cr (VI), highlighting its robust stability and selectivity. The relationship between the physicochemical properties of N-5 and N-HPC was thoroughly examined, revealing that N-5 plays a crucial role in the adsorption process. Due to its high electronegativity, nitrogen-doping into the carbon framework generates a dipole moment, enhancing the electronegativity of N-HPC, altering its local electron density and polarity, increasing specific surface area, carbon defect density, and ion exchange capacity. These factors collectively contribute to significant improvements in pore filling, ion exchange efficiency, and electrostatic adsorption by N-HPC. The reduction complexation mechanism emerges as the dominant factor in the adsorption process. N-5 not only provides reducing electrons as an electron donor, facilitating the continuous conversion of Cr (VI) to Cr (III), but also acts as an adsorption active site, complexing Cr to the surface of N-HPC. This synergistic effect strengthens the reduction complexation, enhances adsorption performance, and improves the regeneration cycle and adsorption selectivity for Cr.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"956 ","pages":"177426"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the promotive mechanism of nitrogen-doped porous carbon from wasted lignin for Cr (VI) removal.\",\"authors\":\"Huirong Zhang, Yi Shen, Xiaokai Shi, Jinlei Cui, Baofeng Wang, Yanxia Guo, Dongke Zhang, Fangqin Cheng\",\"doi\":\"10.1016/j.scitotenv.2024.177426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistent environmental pollution by heavy metals, particularly Cr (VI), poses significant risks to ecosystems and human health due to its high toxicity and bioaccumulation potential. The development of high-performance, cost-effective adsorbents from sustainable materials remains a critical challenge in the field of Cr (VI) remediation. This study investigates the influence of pyrrolic-N (N-5) within nitrogen-doped hierarchical porous carbon (N-HPC) on its adsorption capacity. Results indicate that N-HPC variants with a higher N-5 content exhibit superior adsorption abilities. The optimal sample demonstrated an exceptional adsorption capacity of 386.2 mg/g for Cr (VI). Even after seven regeneration cycles, this N-HPC variant maintained a remarkable 77.8 % removal efficiency for Cr (VI), highlighting its robust stability and selectivity. The relationship between the physicochemical properties of N-5 and N-HPC was thoroughly examined, revealing that N-5 plays a crucial role in the adsorption process. Due to its high electronegativity, nitrogen-doping into the carbon framework generates a dipole moment, enhancing the electronegativity of N-HPC, altering its local electron density and polarity, increasing specific surface area, carbon defect density, and ion exchange capacity. These factors collectively contribute to significant improvements in pore filling, ion exchange efficiency, and electrostatic adsorption by N-HPC. The reduction complexation mechanism emerges as the dominant factor in the adsorption process. N-5 not only provides reducing electrons as an electron donor, facilitating the continuous conversion of Cr (VI) to Cr (III), but also acts as an adsorption active site, complexing Cr to the surface of N-HPC. This synergistic effect strengthens the reduction complexation, enhances adsorption performance, and improves the regeneration cycle and adsorption selectivity for Cr.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"956 \",\"pages\":\"177426\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177426\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177426","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unraveling the promotive mechanism of nitrogen-doped porous carbon from wasted lignin for Cr (VI) removal.
Persistent environmental pollution by heavy metals, particularly Cr (VI), poses significant risks to ecosystems and human health due to its high toxicity and bioaccumulation potential. The development of high-performance, cost-effective adsorbents from sustainable materials remains a critical challenge in the field of Cr (VI) remediation. This study investigates the influence of pyrrolic-N (N-5) within nitrogen-doped hierarchical porous carbon (N-HPC) on its adsorption capacity. Results indicate that N-HPC variants with a higher N-5 content exhibit superior adsorption abilities. The optimal sample demonstrated an exceptional adsorption capacity of 386.2 mg/g for Cr (VI). Even after seven regeneration cycles, this N-HPC variant maintained a remarkable 77.8 % removal efficiency for Cr (VI), highlighting its robust stability and selectivity. The relationship between the physicochemical properties of N-5 and N-HPC was thoroughly examined, revealing that N-5 plays a crucial role in the adsorption process. Due to its high electronegativity, nitrogen-doping into the carbon framework generates a dipole moment, enhancing the electronegativity of N-HPC, altering its local electron density and polarity, increasing specific surface area, carbon defect density, and ion exchange capacity. These factors collectively contribute to significant improvements in pore filling, ion exchange efficiency, and electrostatic adsorption by N-HPC. The reduction complexation mechanism emerges as the dominant factor in the adsorption process. N-5 not only provides reducing electrons as an electron donor, facilitating the continuous conversion of Cr (VI) to Cr (III), but also acts as an adsorption active site, complexing Cr to the surface of N-HPC. This synergistic effect strengthens the reduction complexation, enhances adsorption performance, and improves the regeneration cycle and adsorption selectivity for Cr.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.