Shahrzad Maleki , Elahe Abedi , Seyed Mohammad Bagher Hashemi
{"title":"深入研究超声波模式和振幅依赖性类胡萝卜素和叶绿素降解或/和吸附的动力学、等温线和热力学。","authors":"Shahrzad Maleki , Elahe Abedi , Seyed Mohammad Bagher Hashemi","doi":"10.1016/j.ultsonch.2024.107130","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental data were analyzed to investigate the underlying adsorption or degradation mechanism of carotenoids and chlorophylls over the bleaching of sunflower oil through different amplitudes of horn and bath ultrasound (ultrasound-assisted bleaching; UAB), temperature, time, and bleaching clay. Quantifying the color removal efficiency in both batch and continuous systems, along with the corresponding process time and energy consumption, is paramount for evaluating the energy-related performance of the treatment method. The adsorption of pigments onto activated bentonite was notably rapid and effective when ultrasound was employed. In both bleaching processes, the adsorption kinetics of carotenoids and chlorophyll exhibited a pseudo-second-order behavior. At the same time, a pseudo-first-order equation provided a better fit for the control conditions. Moreover, intra-particle diffusion contributed to the adsorption mechanism, although it was not the only rate-limiting step in the adsorption of pigments on the clay. It is hypothesized that carotenoid and chlorophyll adsorption occur through physisorption in control conditions, while chemical reactions play a role in pigment removal under sonication. The Freundlich isotherm yielded precise estimates of the adsorption equilibrium data for carotenoid and chlorophyll during ultrasonic bleaching, suggesting a multilayer adsorption mechanism under ultrasound exposure. The thermodynamic study found that pigment adsorption was feasible, spontaneous, and endothermic. According to the results, horn and bath ultrasound, especially at higher voltages, can remarkably remove carotenoid and chlorophyll from sunflower oil compared to the traditional bleaching process.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107130"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into kinetic, isotherm, and thermodynamic of ultrasound mode- and amplitude-dependent carotenoid and chlorophyll degradation or/and adsorption\",\"authors\":\"Shahrzad Maleki , Elahe Abedi , Seyed Mohammad Bagher Hashemi\",\"doi\":\"10.1016/j.ultsonch.2024.107130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experimental data were analyzed to investigate the underlying adsorption or degradation mechanism of carotenoids and chlorophylls over the bleaching of sunflower oil through different amplitudes of horn and bath ultrasound (ultrasound-assisted bleaching; UAB), temperature, time, and bleaching clay. Quantifying the color removal efficiency in both batch and continuous systems, along with the corresponding process time and energy consumption, is paramount for evaluating the energy-related performance of the treatment method. The adsorption of pigments onto activated bentonite was notably rapid and effective when ultrasound was employed. In both bleaching processes, the adsorption kinetics of carotenoids and chlorophyll exhibited a pseudo-second-order behavior. At the same time, a pseudo-first-order equation provided a better fit for the control conditions. Moreover, intra-particle diffusion contributed to the adsorption mechanism, although it was not the only rate-limiting step in the adsorption of pigments on the clay. It is hypothesized that carotenoid and chlorophyll adsorption occur through physisorption in control conditions, while chemical reactions play a role in pigment removal under sonication. The Freundlich isotherm yielded precise estimates of the adsorption equilibrium data for carotenoid and chlorophyll during ultrasonic bleaching, suggesting a multilayer adsorption mechanism under ultrasound exposure. The thermodynamic study found that pigment adsorption was feasible, spontaneous, and endothermic. According to the results, horn and bath ultrasound, especially at higher voltages, can remarkably remove carotenoid and chlorophyll from sunflower oil compared to the traditional bleaching process.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107130\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003791\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Insights into kinetic, isotherm, and thermodynamic of ultrasound mode- and amplitude-dependent carotenoid and chlorophyll degradation or/and adsorption
Experimental data were analyzed to investigate the underlying adsorption or degradation mechanism of carotenoids and chlorophylls over the bleaching of sunflower oil through different amplitudes of horn and bath ultrasound (ultrasound-assisted bleaching; UAB), temperature, time, and bleaching clay. Quantifying the color removal efficiency in both batch and continuous systems, along with the corresponding process time and energy consumption, is paramount for evaluating the energy-related performance of the treatment method. The adsorption of pigments onto activated bentonite was notably rapid and effective when ultrasound was employed. In both bleaching processes, the adsorption kinetics of carotenoids and chlorophyll exhibited a pseudo-second-order behavior. At the same time, a pseudo-first-order equation provided a better fit for the control conditions. Moreover, intra-particle diffusion contributed to the adsorption mechanism, although it was not the only rate-limiting step in the adsorption of pigments on the clay. It is hypothesized that carotenoid and chlorophyll adsorption occur through physisorption in control conditions, while chemical reactions play a role in pigment removal under sonication. The Freundlich isotherm yielded precise estimates of the adsorption equilibrium data for carotenoid and chlorophyll during ultrasonic bleaching, suggesting a multilayer adsorption mechanism under ultrasound exposure. The thermodynamic study found that pigment adsorption was feasible, spontaneous, and endothermic. According to the results, horn and bath ultrasound, especially at higher voltages, can remarkably remove carotenoid and chlorophyll from sunflower oil compared to the traditional bleaching process.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.