利用鲍曼不动杆菌的生物发光抑制水平测量溶液毒性的误区。

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-11-05 DOI:10.1016/j.cbpc.2024.110067
Cheng-Kun He , Ming-Chun Hung , Chong-Hao Hxu , Yi-Hsien Hsieh , Yung-Sheng Lin
{"title":"利用鲍曼不动杆菌的生物发光抑制水平测量溶液毒性的误区。","authors":"Cheng-Kun He ,&nbsp;Ming-Chun Hung ,&nbsp;Chong-Hao Hxu ,&nbsp;Yi-Hsien Hsieh ,&nbsp;Yung-Sheng Lin","doi":"10.1016/j.cbpc.2024.110067","DOIUrl":null,"url":null,"abstract":"<div><div>Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of <em>Aliivibrio fischeri</em>. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how <em>A. fischeri</em> responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"287 ","pages":"Article 110067"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pitfalls in measuring solution toxicity using the level of bioluminescence inhibition in Aliivibrio fischeri\",\"authors\":\"Cheng-Kun He ,&nbsp;Ming-Chun Hung ,&nbsp;Chong-Hao Hxu ,&nbsp;Yi-Hsien Hsieh ,&nbsp;Yung-Sheng Lin\",\"doi\":\"10.1016/j.cbpc.2024.110067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of <em>Aliivibrio fischeri</em>. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how <em>A. fischeri</em> responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"287 \",\"pages\":\"Article 110067\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002357\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002357","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

工业活动的有毒排放是一个严重的问题,尤其是在水质方面。因此,制定了 ISO 11348-3 水质评估标准。该方法用于通过抑制弗氏阿里弧菌的生物发光来确定溶液毒性。然而,测量的准确性受单个反应时间点选择的影响。本研究探讨了曲线下面积(AUC)法在水质检测中的实用性,并评估了鱼腥藻如何随着时间的推移对乙醇、丙酮和硫酸锌这三种毒性物质做出反应。结果发现,这三种物质的半最大有效浓度分别为 10.13%、5.02% 和 19.49 mg/L。与单个反应时间点的评估结果相比,AUC 的结果通过捕捉不同毒物浓度和反应时间下的动态变化,全面捕捉了毒物的影响,包括时间依赖效应和激素效应。因此,AUC 分析可减少单个反应时间带来的缺陷,为水质检测提供更准确可靠的评估方法,有助于更好地了解有毒物质对水生环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pitfalls in measuring solution toxicity using the level of bioluminescence inhibition in Aliivibrio fischeri
Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of Aliivibrio fischeri. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how A. fischeri responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Exposure to amitriptyline disturbs behaviors in adult zebrafish and their offspring via altering neurotransmitter levels. Non-invasive recording of heartbeats in Danio rerio and Daphnia magna to assess the toxicity of imidacloprid and glyphosate. Risk assessment of developmental and neurotoxicity by the flavoring agent perillaldehyde: NAC (N-acetylcysteine) mitigation of oxidative stress-mediated inhibition of the Nrf2 pathway. Antioxidant response fail to rescue growth of Hermetia illucens L. larvae induced by copper accumulated during long-term exposure A metabolomic analysis on the toxicological effects of the universal solvent, dimethyl sulfoxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1