Xin Wang, Jie Gao, Jiahui Wu, Xuan Li, Junxun Li, Haihong Li, Songlin Wang
{"title":"纳豆芽孢杆菌固态发酵在氨氮移动和土壤保水过程中产生聚-γ-谷氨酸。","authors":"Xin Wang, Jie Gao, Jiahui Wu, Xuan Li, Junxun Li, Haihong Li, Songlin Wang","doi":"10.1016/j.enzmictec.2024.110543","DOIUrl":null,"url":null,"abstract":"<p><p>A high polyglutamic acid (γ-PGA) producing strain of Bacillus natto UV-40-50 was screened by ultraviolet mutagenesis treatment and identified as still belonging to the Bacillus specie. The optimal fermentation medium composition for solid state fermentation (SSF) of B. natto strain UV-40-50 strain was determined by one-way analysis of variance, under which the yield of γ-PGA was 55.19 g/kg, and the presence and molecular weight of γ-PGA in the γ-PGA-purified samples were determined by a series of characterizations. The purification ability of the unseparated solid fermentation product (SFP) on ammonia nitrogen and nitrite in the water column, as well as its effect on soil water retention, germination rate and seedling length of lettuce and cabbage were further investigated. The results showed that the addition of 1 g/m3 SFP could effectively remove more than 60 % of ammonia nitrogen and more than 40 % of nitrite in the water body; the addition of 0.01 % SFP could increase the water retention capacity of cabbage soil by 2.13 times, and increase the water retention capacity of lettuce soil by 12 %; at the same time, the SFP could also significantly increase the germination rate and seedling length of both cabbage and lettuce.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-γ-glutamic production by solid-state fermentation of Bacillus natto in ammonia nitrogen movement and soil water retention processes.\",\"authors\":\"Xin Wang, Jie Gao, Jiahui Wu, Xuan Li, Junxun Li, Haihong Li, Songlin Wang\",\"doi\":\"10.1016/j.enzmictec.2024.110543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A high polyglutamic acid (γ-PGA) producing strain of Bacillus natto UV-40-50 was screened by ultraviolet mutagenesis treatment and identified as still belonging to the Bacillus specie. The optimal fermentation medium composition for solid state fermentation (SSF) of B. natto strain UV-40-50 strain was determined by one-way analysis of variance, under which the yield of γ-PGA was 55.19 g/kg, and the presence and molecular weight of γ-PGA in the γ-PGA-purified samples were determined by a series of characterizations. The purification ability of the unseparated solid fermentation product (SFP) on ammonia nitrogen and nitrite in the water column, as well as its effect on soil water retention, germination rate and seedling length of lettuce and cabbage were further investigated. The results showed that the addition of 1 g/m3 SFP could effectively remove more than 60 % of ammonia nitrogen and more than 40 % of nitrite in the water body; the addition of 0.01 % SFP could increase the water retention capacity of cabbage soil by 2.13 times, and increase the water retention capacity of lettuce soil by 12 %; at the same time, the SFP could also significantly increase the germination rate and seedling length of both cabbage and lettuce.</p>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.enzmictec.2024.110543\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2024.110543","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Poly-γ-glutamic production by solid-state fermentation of Bacillus natto in ammonia nitrogen movement and soil water retention processes.
A high polyglutamic acid (γ-PGA) producing strain of Bacillus natto UV-40-50 was screened by ultraviolet mutagenesis treatment and identified as still belonging to the Bacillus specie. The optimal fermentation medium composition for solid state fermentation (SSF) of B. natto strain UV-40-50 strain was determined by one-way analysis of variance, under which the yield of γ-PGA was 55.19 g/kg, and the presence and molecular weight of γ-PGA in the γ-PGA-purified samples were determined by a series of characterizations. The purification ability of the unseparated solid fermentation product (SFP) on ammonia nitrogen and nitrite in the water column, as well as its effect on soil water retention, germination rate and seedling length of lettuce and cabbage were further investigated. The results showed that the addition of 1 g/m3 SFP could effectively remove more than 60 % of ammonia nitrogen and more than 40 % of nitrite in the water body; the addition of 0.01 % SFP could increase the water retention capacity of cabbage soil by 2.13 times, and increase the water retention capacity of lettuce soil by 12 %; at the same time, the SFP could also significantly increase the germination rate and seedling length of both cabbage and lettuce.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.