Yanfang Li, Pei Chen, Mengliang Zhang, Jianghao Sun
{"title":"使用反相/弱阴离子交换混合模式色谱柱保留和分离葡萄糖苷酸盐的研究","authors":"Yanfang Li, Pei Chen, Mengliang Zhang, Jianghao Sun","doi":"10.1002/jssc.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glucosinolates, a crucial group of secondary metabolites in <i>Brassica</i> vegetables, present significant chromatographic separation challenges due to their anionic form, structure diversities, and co-existence of other phenolic compounds. This study comparatively investigated the retention and separation of seven glucosinolates using a mixed-mode reversed-phase/weak anion-exchange column and a conventional reversed-phase C18 column. Separation factors for each glucosinolate with its adjacent peaks were over 1.0 on the mixed-mode column, while co-eluting was observed on the C18 column. The effects of mobile phase additives and pH on the separation and retention of glucosinolates were also investigated. Results showed that glucosinolate retention was inversely related to both buffer concentration and pH. The optimized method for the mix-mode column was applied to the complex <i>Brassica</i> vegetable samples. In addition to the 17 well-resolved glucosinolate peaks, 34 peaks for phenolic compounds were identified in broccoli microgreen, suggesting the successful application scenarios for qualitative analysis in comparison with the single mode reverse phase C18 column. This study demonstrates that the mixed-mode reversed-phase/weak anion-exchange column can be used as a promising separation tool for organic anions in a complex sample matrix.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Retention and Separation of Glucosinolates With a Mixed-Mode Reversed-Phase/Weak Anion-Exchange Column\",\"authors\":\"Yanfang Li, Pei Chen, Mengliang Zhang, Jianghao Sun\",\"doi\":\"10.1002/jssc.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Glucosinolates, a crucial group of secondary metabolites in <i>Brassica</i> vegetables, present significant chromatographic separation challenges due to their anionic form, structure diversities, and co-existence of other phenolic compounds. This study comparatively investigated the retention and separation of seven glucosinolates using a mixed-mode reversed-phase/weak anion-exchange column and a conventional reversed-phase C18 column. Separation factors for each glucosinolate with its adjacent peaks were over 1.0 on the mixed-mode column, while co-eluting was observed on the C18 column. The effects of mobile phase additives and pH on the separation and retention of glucosinolates were also investigated. Results showed that glucosinolate retention was inversely related to both buffer concentration and pH. The optimized method for the mix-mode column was applied to the complex <i>Brassica</i> vegetable samples. In addition to the 17 well-resolved glucosinolate peaks, 34 peaks for phenolic compounds were identified in broccoli microgreen, suggesting the successful application scenarios for qualitative analysis in comparison with the single mode reverse phase C18 column. This study demonstrates that the mixed-mode reversed-phase/weak anion-exchange column can be used as a promising separation tool for organic anions in a complex sample matrix.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70007\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Investigation on the Retention and Separation of Glucosinolates With a Mixed-Mode Reversed-Phase/Weak Anion-Exchange Column
Glucosinolates, a crucial group of secondary metabolites in Brassica vegetables, present significant chromatographic separation challenges due to their anionic form, structure diversities, and co-existence of other phenolic compounds. This study comparatively investigated the retention and separation of seven glucosinolates using a mixed-mode reversed-phase/weak anion-exchange column and a conventional reversed-phase C18 column. Separation factors for each glucosinolate with its adjacent peaks were over 1.0 on the mixed-mode column, while co-eluting was observed on the C18 column. The effects of mobile phase additives and pH on the separation and retention of glucosinolates were also investigated. Results showed that glucosinolate retention was inversely related to both buffer concentration and pH. The optimized method for the mix-mode column was applied to the complex Brassica vegetable samples. In addition to the 17 well-resolved glucosinolate peaks, 34 peaks for phenolic compounds were identified in broccoli microgreen, suggesting the successful application scenarios for qualitative analysis in comparison with the single mode reverse phase C18 column. This study demonstrates that the mixed-mode reversed-phase/weak anion-exchange column can be used as a promising separation tool for organic anions in a complex sample matrix.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.