聚氨基酸型聚合离子涂层可通过防污和恢复微环境来抑制凝血和炎症。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-11-08 DOI:10.1002/mabi.202400336
Zehong Xiang, Honghong Chen, Feng Wu, Haobo Pan
{"title":"聚氨基酸型聚合离子涂层可通过防污和恢复微环境来抑制凝血和炎症。","authors":"Zehong Xiang, Honghong Chen, Feng Wu, Haobo Pan","doi":"10.1002/mabi.202400336","DOIUrl":null,"url":null,"abstract":"<p><p>Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment.\",\"authors\":\"Zehong Xiang, Honghong Chen, Feng Wu, Haobo Pan\",\"doi\":\"10.1002/mabi.202400336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400336\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于表面性能有限而导致的蛋白质粘附和血栓形成给生物医学植入物带来了巨大挑战。虽然目前已有多种亲水涂层或药物释放涂层的报道,但单一涂层无法应对复杂生理环境条件下的病例,导致涂层效果有限。本研究构建了一种源于聚氨基酸的齐聚物涂层,以消除微环境中的活性氧(ROS)。研究表明,该涂层具有良好的亲水性、稳定性和润滑性,能明显防止蛋白质粘附。同时,涂层还能消除过氧化氢,保持微环境的稳定性。体内和体外实验表明,涂层具有良好的生物相容性,并能抑制血栓形成。氨基酸齐聚物涂层可防止蛋白质沉积,缓解炎症过程,抑制血栓形成,降低植入式医疗器械的风险,延长其使用寿命。因此,这项研究为开发能减少植入并发症的氨基酸型齐聚物涂层铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment.

Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
In Situ Forming Injectable Gelatin-Based Antibacterial Bioadhesives for Preventing Postoperative Leakage and Abdominal Adhesions. Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment. Surface Coating of ZIF-8 Nanoparticles with Polyacrylic Acid: A Facile Approach to Enhance Chemical Stability for Biomedical Applications. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. The Application of Biomaterial-Based Spinal Cord Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1