Oriol Sans-Planell, Takenao Shinohara, Francesco Grazzi, Francesco Cantini, Yuhua Su, Yoshihiro Matsumoto, Joseph D Parker, Ingo Manke
{"title":"重新定义 RADEN 的高分辨率中子成像能力。","authors":"Oriol Sans-Planell, Takenao Shinohara, Francesco Grazzi, Francesco Cantini, Yuhua Su, Yoshihiro Matsumoto, Joseph D Parker, Ingo Manke","doi":"10.1063/5.0235243","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a significant development in the Energy-Resolved Neutron Imaging System RADEN, in the Japan Proton Accelerator Research Complex, Japan. Through a systematic study, the collimation power of the facility was reevaluated. What was initially considered to be values of 230, 420, and 760 have been proven to be much higher. To perform the calculation of the L/D factor of the beam, a state-of-the-art method has been used, along with a standard reference sample to measure the resolution of neutron images. To add robustness to the results, the study compares five different scintillators of different composition and thickness [6LiF:ZnS(Ag) of 50, 100, 200, and 300 μm and Gd2O2S of 50 μm]. The calculated collimating power of the beam ranges between 470 and 1520. These results place a spotlight on an existing discrepancy between the geometrically calculated L/D and the actual measurable quantity, as well as highlight the superior performance of the RADEN beamline.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redifining RADEN's high-resolution neutron imaging capabilities.\",\"authors\":\"Oriol Sans-Planell, Takenao Shinohara, Francesco Grazzi, Francesco Cantini, Yuhua Su, Yoshihiro Matsumoto, Joseph D Parker, Ingo Manke\",\"doi\":\"10.1063/5.0235243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a significant development in the Energy-Resolved Neutron Imaging System RADEN, in the Japan Proton Accelerator Research Complex, Japan. Through a systematic study, the collimation power of the facility was reevaluated. What was initially considered to be values of 230, 420, and 760 have been proven to be much higher. To perform the calculation of the L/D factor of the beam, a state-of-the-art method has been used, along with a standard reference sample to measure the resolution of neutron images. To add robustness to the results, the study compares five different scintillators of different composition and thickness [6LiF:ZnS(Ag) of 50, 100, 200, and 300 μm and Gd2O2S of 50 μm]. The calculated collimating power of the beam ranges between 470 and 1520. These results place a spotlight on an existing discrepancy between the geometrically calculated L/D and the actual measurable quantity, as well as highlight the superior performance of the RADEN beamline.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0235243\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0235243","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
This study presents a significant development in the Energy-Resolved Neutron Imaging System RADEN, in the Japan Proton Accelerator Research Complex, Japan. Through a systematic study, the collimation power of the facility was reevaluated. What was initially considered to be values of 230, 420, and 760 have been proven to be much higher. To perform the calculation of the L/D factor of the beam, a state-of-the-art method has been used, along with a standard reference sample to measure the resolution of neutron images. To add robustness to the results, the study compares five different scintillators of different composition and thickness [6LiF:ZnS(Ag) of 50, 100, 200, and 300 μm and Gd2O2S of 50 μm]. The calculated collimating power of the beam ranges between 470 and 1520. These results place a spotlight on an existing discrepancy between the geometrically calculated L/D and the actual measurable quantity, as well as highlight the superior performance of the RADEN beamline.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.