通过二维材料层间的限制实现压力驱动有机反应。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-08 DOI:10.1126/sciadv.adp9804
Seong In Yoon, Hyoju Park, Yeonju Lee, Changding Guo, Yu Jin Kim, Joo Song Lee, Seungwoo Son, Myeonggi Choe, Daeho Han, Kidal Kwon, Jongyeong Lee, Kyung Yeol Ma, Amirreza Ghassami, Sung Wook Moon, Sun-Young Park, Bong Kyun Kang, Yoon-Jeong Kim, Seonghyun Koo, Armando Genco, Jaewoo Shim, Alexander Tartakovskii, Yunrui Duan, Feng Ding, Seokhoon Ahn, Sunmin Ryu, Ju-Young Kim, Woo Seok Yang, Manish Chhowalla, Young S. Park, Seung Kyu Min, Zonghoon Lee, Hyeon Suk Shin
{"title":"通过二维材料层间的限制实现压力驱动有机反应。","authors":"Seong In Yoon,&nbsp;Hyoju Park,&nbsp;Yeonju Lee,&nbsp;Changding Guo,&nbsp;Yu Jin Kim,&nbsp;Joo Song Lee,&nbsp;Seungwoo Son,&nbsp;Myeonggi Choe,&nbsp;Daeho Han,&nbsp;Kidal Kwon,&nbsp;Jongyeong Lee,&nbsp;Kyung Yeol Ma,&nbsp;Amirreza Ghassami,&nbsp;Sung Wook Moon,&nbsp;Sun-Young Park,&nbsp;Bong Kyun Kang,&nbsp;Yoon-Jeong Kim,&nbsp;Seonghyun Koo,&nbsp;Armando Genco,&nbsp;Jaewoo Shim,&nbsp;Alexander Tartakovskii,&nbsp;Yunrui Duan,&nbsp;Feng Ding,&nbsp;Seokhoon Ahn,&nbsp;Sunmin Ryu,&nbsp;Ju-Young Kim,&nbsp;Woo Seok Yang,&nbsp;Manish Chhowalla,&nbsp;Young S. Park,&nbsp;Seung Kyu Min,&nbsp;Zonghoon Lee,&nbsp;Hyeon Suk Shin","doi":"10.1126/sciadv.adp9804","DOIUrl":null,"url":null,"abstract":"<div >Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions. Specifically, we show that cyclodehydrogenation of hexaphenylbenzene without catalysts as a proof of concept and oxidative polymerization of dopamine into sheet-like crystalline structure are enabled by the effective high pressure experienced by the reactants between the graphene layers. Our results demonstrate a facile, general approach for performing high-pressure chemistry based on confinement of reactants within two-dimensional materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 45","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pressure enabled organic reactions via confinement between layers of 2D materials\",\"authors\":\"Seong In Yoon,&nbsp;Hyoju Park,&nbsp;Yeonju Lee,&nbsp;Changding Guo,&nbsp;Yu Jin Kim,&nbsp;Joo Song Lee,&nbsp;Seungwoo Son,&nbsp;Myeonggi Choe,&nbsp;Daeho Han,&nbsp;Kidal Kwon,&nbsp;Jongyeong Lee,&nbsp;Kyung Yeol Ma,&nbsp;Amirreza Ghassami,&nbsp;Sung Wook Moon,&nbsp;Sun-Young Park,&nbsp;Bong Kyun Kang,&nbsp;Yoon-Jeong Kim,&nbsp;Seonghyun Koo,&nbsp;Armando Genco,&nbsp;Jaewoo Shim,&nbsp;Alexander Tartakovskii,&nbsp;Yunrui Duan,&nbsp;Feng Ding,&nbsp;Seokhoon Ahn,&nbsp;Sunmin Ryu,&nbsp;Ju-Young Kim,&nbsp;Woo Seok Yang,&nbsp;Manish Chhowalla,&nbsp;Young S. Park,&nbsp;Seung Kyu Min,&nbsp;Zonghoon Lee,&nbsp;Hyeon Suk Shin\",\"doi\":\"10.1126/sciadv.adp9804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions. Specifically, we show that cyclodehydrogenation of hexaphenylbenzene without catalysts as a proof of concept and oxidative polymerization of dopamine into sheet-like crystalline structure are enabled by the effective high pressure experienced by the reactants between the graphene layers. Our results demonstrate a facile, general approach for performing high-pressure chemistry based on confinement of reactants within two-dimensional materials.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 45\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adp9804\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp9804","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将反应物封闭在低维材料的纳米级空间内,已被证明可使紧张的反应物重新定向或稳定不稳定的反应物,从而合成分子和调整化学反应活性。虽然很少有研究报道零维孔隙和一维纳米管内的化学反应,但二维材料之间密闭空间内的有机反应尚待探索。在这里,我们证明了封闭在石墨烯或六方氮化硼原子薄片之间的反应物所承受的压力高达 7 千兆帕斯卡,这使得在标准条件下通常不会发生的无溶剂有机反应得以进行。具体来说,我们的研究表明,石墨烯层之间的反应物所经历的有效高压,使得六苯在不使用催化剂的情况下进行环氢化反应(作为概念验证),以及多巴胺氧化聚合成片状晶体结构成为可能。我们的研究结果表明,基于二维材料中反应物的封闭性,可以方便、普遍地进行高压化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressure enabled organic reactions via confinement between layers of 2D materials
Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions. Specifically, we show that cyclodehydrogenation of hexaphenylbenzene without catalysts as a proof of concept and oxidative polymerization of dopamine into sheet-like crystalline structure are enabled by the effective high pressure experienced by the reactants between the graphene layers. Our results demonstrate a facile, general approach for performing high-pressure chemistry based on confinement of reactants within two-dimensional materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Enhanced dual-mode imaging: Superior photoacoustic and ultrasound endoscopy in live pigs using a transparent ultrasound transducer Acoustic virtual 3D scaffold for direct-interacting tumor organoid–immune cell coculture systems Bridging activity gaps between batch and flow reactor configurations in the electroreduction of carbon dioxide CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration Catalytic kinetic resolution of helical polycyclic phenols via an organocatalyzed enantioselective dearomative amination reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1