Claire Beddok, Alicia Zimmer, Carole Calas Blanchard* and Gad Fuks*,
{"title":"氨基酸衍生乙烯基单体凝胶的合成与综合表征","authors":"Claire Beddok, Alicia Zimmer, Carole Calas Blanchard* and Gad Fuks*, ","doi":"10.1021/acsomega.4c0524610.1021/acsomega.4c05246","DOIUrl":null,"url":null,"abstract":"<p >In this study, we report an easy synthetic pathway to vinyl monomers derivatized with amino acids. Tyrosine-, phenylalanine-, tryptophan-, leucine-, and methionine-based monomers were synthesized, and their polymerization in the presence of cross-linking agents led to the formation of amino acid-based gels. The nature of cross-linker, the time of polymerization, and the type of initiation (photopolymerization or thermopolymerization) were investigated. The obtained gels were characterized using a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheology, scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy. These novel amino acid-based gels could find applications in various areas such as drug delivery, biosensing, and biotechnology.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05246","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Comprehensive Characterization of Amino Acid-Derived Vinyl Monomer Gels\",\"authors\":\"Claire Beddok, Alicia Zimmer, Carole Calas Blanchard* and Gad Fuks*, \",\"doi\":\"10.1021/acsomega.4c0524610.1021/acsomega.4c05246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we report an easy synthetic pathway to vinyl monomers derivatized with amino acids. Tyrosine-, phenylalanine-, tryptophan-, leucine-, and methionine-based monomers were synthesized, and their polymerization in the presence of cross-linking agents led to the formation of amino acid-based gels. The nature of cross-linker, the time of polymerization, and the type of initiation (photopolymerization or thermopolymerization) were investigated. The obtained gels were characterized using a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheology, scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy. These novel amino acid-based gels could find applications in various areas such as drug delivery, biosensing, and biotechnology.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05246\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c05246\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Synthesis and Comprehensive Characterization of Amino Acid-Derived Vinyl Monomer Gels
In this study, we report an easy synthetic pathway to vinyl monomers derivatized with amino acids. Tyrosine-, phenylalanine-, tryptophan-, leucine-, and methionine-based monomers were synthesized, and their polymerization in the presence of cross-linking agents led to the formation of amino acid-based gels. The nature of cross-linker, the time of polymerization, and the type of initiation (photopolymerization or thermopolymerization) were investigated. The obtained gels were characterized using a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheology, scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy. These novel amino acid-based gels could find applications in various areas such as drug delivery, biosensing, and biotechnology.