Xinyu Li, Haiyan Chen*, Yansong Zhang, Chunmiao Yuan, Hongzhao Wei, Wenxue Sun, Zhangjie Lu and Qingzhou Zhang,
{"title":"新型介孔复合抑爆剂的铝粉尘抑爆性能与机理","authors":"Xinyu Li, Haiyan Chen*, Yansong Zhang, Chunmiao Yuan, Hongzhao Wei, Wenxue Sun, Zhangjie Lu and Qingzhou Zhang, ","doi":"10.1021/acsomega.4c0387110.1021/acsomega.4c03871","DOIUrl":null,"url":null,"abstract":"<p >In this paper, using a 20 L spherical explosive device and a Hartmann device, we carried out explosion suppression experiments on 19 and 30 μm aluminum powders (500 g/m<sup>3</sup>) with different concentrations of the new explosive suppressants (MCM41@CS-APP) and CaCO<sub>3</sub> and elaborated on the suppression mechanism of the explosion of MCM41@CS-APP on aluminum powder. The experimental results show that when the concentration of the explosion suppressor is 50 g/m<sup>3</sup>, the maximum explosion pressure (<i>P</i><sub>max</sub>) produced by the explosion of mixed dust is higher than that of the explosion of aluminum powder, and with the increase of the concentration of the deflagration suppressant, the <i>P</i><sub>max</sub> of the mixed dust decreases. When the concentrations of MCM41@CS-APP and CaCO<sub>3</sub> reached 400 g/m<sup>3</sup>, the <i>P</i><sub>max</sub> of the mixed dust (Al = 19 μm) was 0.133 and 0.364 MPa, which decreased by 81.3% and 48.9%, respectively. The <i>P</i><sub>max</sub> of the mixed dust (Al = 30 μm) was not significant. Both detonation inhibitors inhibited the explosion of aluminum powder; the detonation duration of Al/MCM41@CS-APP is shorter; there are fewer aluminum particles in the product; and the initial oxidation temperature of aluminum powder is higher.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c03871","citationCount":"0","resultStr":"{\"title\":\"Aluminum Dust Explosion Suppression Performance and Mechanism of a New Mesoporous Composite Explosion Suppressant\",\"authors\":\"Xinyu Li, Haiyan Chen*, Yansong Zhang, Chunmiao Yuan, Hongzhao Wei, Wenxue Sun, Zhangjie Lu and Qingzhou Zhang, \",\"doi\":\"10.1021/acsomega.4c0387110.1021/acsomega.4c03871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this paper, using a 20 L spherical explosive device and a Hartmann device, we carried out explosion suppression experiments on 19 and 30 μm aluminum powders (500 g/m<sup>3</sup>) with different concentrations of the new explosive suppressants (MCM41@CS-APP) and CaCO<sub>3</sub> and elaborated on the suppression mechanism of the explosion of MCM41@CS-APP on aluminum powder. The experimental results show that when the concentration of the explosion suppressor is 50 g/m<sup>3</sup>, the maximum explosion pressure (<i>P</i><sub>max</sub>) produced by the explosion of mixed dust is higher than that of the explosion of aluminum powder, and with the increase of the concentration of the deflagration suppressant, the <i>P</i><sub>max</sub> of the mixed dust decreases. When the concentrations of MCM41@CS-APP and CaCO<sub>3</sub> reached 400 g/m<sup>3</sup>, the <i>P</i><sub>max</sub> of the mixed dust (Al = 19 μm) was 0.133 and 0.364 MPa, which decreased by 81.3% and 48.9%, respectively. The <i>P</i><sub>max</sub> of the mixed dust (Al = 30 μm) was not significant. Both detonation inhibitors inhibited the explosion of aluminum powder; the detonation duration of Al/MCM41@CS-APP is shorter; there are fewer aluminum particles in the product; and the initial oxidation temperature of aluminum powder is higher.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c03871\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c03871\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c03871","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Aluminum Dust Explosion Suppression Performance and Mechanism of a New Mesoporous Composite Explosion Suppressant
In this paper, using a 20 L spherical explosive device and a Hartmann device, we carried out explosion suppression experiments on 19 and 30 μm aluminum powders (500 g/m3) with different concentrations of the new explosive suppressants (MCM41@CS-APP) and CaCO3 and elaborated on the suppression mechanism of the explosion of MCM41@CS-APP on aluminum powder. The experimental results show that when the concentration of the explosion suppressor is 50 g/m3, the maximum explosion pressure (Pmax) produced by the explosion of mixed dust is higher than that of the explosion of aluminum powder, and with the increase of the concentration of the deflagration suppressant, the Pmax of the mixed dust decreases. When the concentrations of MCM41@CS-APP and CaCO3 reached 400 g/m3, the Pmax of the mixed dust (Al = 19 μm) was 0.133 and 0.364 MPa, which decreased by 81.3% and 48.9%, respectively. The Pmax of the mixed dust (Al = 30 μm) was not significant. Both detonation inhibitors inhibited the explosion of aluminum powder; the detonation duration of Al/MCM41@CS-APP is shorter; there are fewer aluminum particles in the product; and the initial oxidation temperature of aluminum powder is higher.