Anjie Chen, Yi Sun, Yuanyuan Duan, Jinxin Sun, Zhiheng Ji, Lijuan Meng*, Xiaojing Yao* and Xiuyun Zhang*,
{"title":"新预测的磁性 TMB6 单层可实现高效固氮作用","authors":"Anjie Chen, Yi Sun, Yuanyuan Duan, Jinxin Sun, Zhiheng Ji, Lijuan Meng*, Xiaojing Yao* and Xiuyun Zhang*, ","doi":"10.1021/acs.langmuir.4c0286610.1021/acs.langmuir.4c02866","DOIUrl":null,"url":null,"abstract":"<p >Developing electrocatalysts for the N<sub>2</sub> reduction reaction (NRR) with high activity, high selectivity, and low cost is urgently required to enhance the NH<sub>3</sub> yield rate. Based on first-principles calculations, we predict a series of new transition metal boride TMB<sub>6</sub> (TM = Ti, V, Cr, Mn, Fe, and Co) monolayers and investigate their magnetoelectronic and electrocatalytic properties. The results reveal that VB<sub>6</sub> and CoB<sub>6</sub> favor ferromagnetic coupling, while TiB<sub>6</sub>, CrB<sub>6</sub>, MnB<sub>6</sub>, and FeB<sub>6</sub> display antiferromagnetic ordering. Furthermore, TiB<sub>6</sub> exhibits a high Néel temperature of 344 K and a large magnetic anisotropy energy of 614 μeV per Ti atom. Most interestingly, TiB<sub>6</sub> and VB<sub>6</sub> exhibit superior NRR catalytic activity with a limiting potential of −0.50 and −0.19 V, respectively, and favorable NRR selectivity over the HER. Finally, the structural stability of TMB<sub>6</sub> monolayers has been confirmed by a set of phonon dispersion, molecular dynamics, and elastic constant calculations. Our results highlight the use of the newly designed two-dimensional (2D) TM borides as promising candidates for spintronic devices and nitrogen fixation applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"23837–23844 23837–23844"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Newly Predicted Magnetic TMB6 Monolayer for Efficient Nitrogen Fixation\",\"authors\":\"Anjie Chen, Yi Sun, Yuanyuan Duan, Jinxin Sun, Zhiheng Ji, Lijuan Meng*, Xiaojing Yao* and Xiuyun Zhang*, \",\"doi\":\"10.1021/acs.langmuir.4c0286610.1021/acs.langmuir.4c02866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing electrocatalysts for the N<sub>2</sub> reduction reaction (NRR) with high activity, high selectivity, and low cost is urgently required to enhance the NH<sub>3</sub> yield rate. Based on first-principles calculations, we predict a series of new transition metal boride TMB<sub>6</sub> (TM = Ti, V, Cr, Mn, Fe, and Co) monolayers and investigate their magnetoelectronic and electrocatalytic properties. The results reveal that VB<sub>6</sub> and CoB<sub>6</sub> favor ferromagnetic coupling, while TiB<sub>6</sub>, CrB<sub>6</sub>, MnB<sub>6</sub>, and FeB<sub>6</sub> display antiferromagnetic ordering. Furthermore, TiB<sub>6</sub> exhibits a high Néel temperature of 344 K and a large magnetic anisotropy energy of 614 μeV per Ti atom. Most interestingly, TiB<sub>6</sub> and VB<sub>6</sub> exhibit superior NRR catalytic activity with a limiting potential of −0.50 and −0.19 V, respectively, and favorable NRR selectivity over the HER. Finally, the structural stability of TMB<sub>6</sub> monolayers has been confirmed by a set of phonon dispersion, molecular dynamics, and elastic constant calculations. Our results highlight the use of the newly designed two-dimensional (2D) TM borides as promising candidates for spintronic devices and nitrogen fixation applications.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 45\",\"pages\":\"23837–23844 23837–23844\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02866\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02866","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Newly Predicted Magnetic TMB6 Monolayer for Efficient Nitrogen Fixation
Developing electrocatalysts for the N2 reduction reaction (NRR) with high activity, high selectivity, and low cost is urgently required to enhance the NH3 yield rate. Based on first-principles calculations, we predict a series of new transition metal boride TMB6 (TM = Ti, V, Cr, Mn, Fe, and Co) monolayers and investigate their magnetoelectronic and electrocatalytic properties. The results reveal that VB6 and CoB6 favor ferromagnetic coupling, while TiB6, CrB6, MnB6, and FeB6 display antiferromagnetic ordering. Furthermore, TiB6 exhibits a high Néel temperature of 344 K and a large magnetic anisotropy energy of 614 μeV per Ti atom. Most interestingly, TiB6 and VB6 exhibit superior NRR catalytic activity with a limiting potential of −0.50 and −0.19 V, respectively, and favorable NRR selectivity over the HER. Finally, the structural stability of TMB6 monolayers has been confirmed by a set of phonon dispersion, molecular dynamics, and elastic constant calculations. Our results highlight the use of the newly designed two-dimensional (2D) TM borides as promising candidates for spintronic devices and nitrogen fixation applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).