通过 P′3-堆叠技术将高纳含量桦木岩与可调谐活性面相结合,用于先进的钠离子水电池

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-11-13 DOI:10.1021/acsnano.4c09448
Yang Zhao, Xiaohui Zhu, Qinghua Zhang, Lin Gu, Zhengyi Shi, Ce Qiu, Tingting Chen, Mingzhu Ni, Yuhang Zhuang, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia
{"title":"通过 P′3-堆叠技术将高纳含量桦木岩与可调谐活性面相结合,用于先进的钠离子水电池","authors":"Yang Zhao, Xiaohui Zhu, Qinghua Zhang, Lin Gu, Zhengyi Shi, Ce Qiu, Tingting Chen, Mingzhu Ni, Yuhang Zhuang, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia","doi":"10.1021/acsnano.4c09448","DOIUrl":null,"url":null,"abstract":"Layered Na-birnessites are promising cathode materials for aqueous sodium-ion batteries due to their high theoretical capacity, low cost, and environmental benignity. However, the general O′3 Na-birnessites possess low Na content and dominant inactive {001} exposed facets, which compromise their Na storage capability and cycling stability. Herein, we develop a high-Na-content P′3-Na<sub>0.71</sub>MnO<sub>2</sub>·0.15H<sub>2</sub>O with highly enriched {010} active facets by a hydrothermal conversion method. In comparison with the O′3 Na-birnessite, the P′3 Na-birnessite with a high ratio of {010}/{001} exposed facets provides greatly increased open channels for Na<sup>+</sup> diffusion, while the P′3 stacking affords a lower Na<sup>+</sup> diffusion barrier, resulting in improved electrode kinetics with a large specific capacity of 176 mAh g<sup>–1</sup> at 0.2 A g<sup>–1</sup>. More importantly, the P′3 Na-birnessite manifests solo Na<sup>+</sup> intercalation/deintercalation with extraordinary cycling stability in an aqueous electrolyte, achieving 90.5% capacity retention after 60,000 cycles. When coupled with the NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> anode, the P′3 Na-birnessite-based full cell delivers both high energy density and long cycle life, demonstrating the potential application in aqueous sodium-ion batteries. This study demonstrates an efficient method to prepare high-Na-content P′3 birnessite with tunable exposed facets and provides important insights into developing highly stable layered cathodes for sustainable aqueous sodium-ion batteries.","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Na-Content Birnessite via P′3-Stacking with Tunable Active Facets for Advanced Aqueous Sodium-Ion Batteries\",\"authors\":\"Yang Zhao, Xiaohui Zhu, Qinghua Zhang, Lin Gu, Zhengyi Shi, Ce Qiu, Tingting Chen, Mingzhu Ni, Yuhang Zhuang, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia\",\"doi\":\"10.1021/acsnano.4c09448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered Na-birnessites are promising cathode materials for aqueous sodium-ion batteries due to their high theoretical capacity, low cost, and environmental benignity. However, the general O′3 Na-birnessites possess low Na content and dominant inactive {001} exposed facets, which compromise their Na storage capability and cycling stability. Herein, we develop a high-Na-content P′3-Na<sub>0.71</sub>MnO<sub>2</sub>·0.15H<sub>2</sub>O with highly enriched {010} active facets by a hydrothermal conversion method. In comparison with the O′3 Na-birnessite, the P′3 Na-birnessite with a high ratio of {010}/{001} exposed facets provides greatly increased open channels for Na<sup>+</sup> diffusion, while the P′3 stacking affords a lower Na<sup>+</sup> diffusion barrier, resulting in improved electrode kinetics with a large specific capacity of 176 mAh g<sup>–1</sup> at 0.2 A g<sup>–1</sup>. More importantly, the P′3 Na-birnessite manifests solo Na<sup>+</sup> intercalation/deintercalation with extraordinary cycling stability in an aqueous electrolyte, achieving 90.5% capacity retention after 60,000 cycles. When coupled with the NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> anode, the P′3 Na-birnessite-based full cell delivers both high energy density and long cycle life, demonstrating the potential application in aqueous sodium-ion batteries. This study demonstrates an efficient method to prepare high-Na-content P′3 birnessite with tunable exposed facets and provides important insights into developing highly stable layered cathodes for sustainable aqueous sodium-ion batteries.\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09448\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09448","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层状 Na-birnessites 具有理论容量高、成本低和对环境无害等优点,是一种很有前途的水性钠离子电池阴极材料。然而,一般的 O′3 钠桦烷石的钠含量较低,且主要存在不活泼的{001}裸露面,这影响了其钠储存能力和循环稳定性。在此,我们通过水热转化方法开发出了一种具有高度富集{010}活性面的高纳含量 P′3-Na0.71MnO2-0.15H2O 。与 O′3 Na-birnessite 相比,具有高比例{010}/{001}裸露面的 P′3 Na-birnessite 大大增加了 Na+ 扩散的开放通道,而 P′3 堆叠则降低了 Na+ 扩散阻力,从而改善了电极动力学,在 0.2 A g-1 条件下可获得 176 mAh g-1 的大比容量。更重要的是,P′3 Na-birnessite 在水性电解质中表现出独特的 Na+ 插层/脱插层能力和非凡的循环稳定性,在 60,000 次循环后可达到 90.5% 的容量保持率。与 NaTi2(PO4)3 阳极配合使用时,基于 P′3 Na-birnessite 的全电池可实现高能量密度和长循环寿命,证明了其在水性钠离子电池中的应用潜力。这项研究展示了制备具有可调暴露面的高纳含量 P′3 比尔内斯特的有效方法,并为开发用于可持续水性钠离子电池的高稳定性层状阴极提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Na-Content Birnessite via P′3-Stacking with Tunable Active Facets for Advanced Aqueous Sodium-Ion Batteries
Layered Na-birnessites are promising cathode materials for aqueous sodium-ion batteries due to their high theoretical capacity, low cost, and environmental benignity. However, the general O′3 Na-birnessites possess low Na content and dominant inactive {001} exposed facets, which compromise their Na storage capability and cycling stability. Herein, we develop a high-Na-content P′3-Na0.71MnO2·0.15H2O with highly enriched {010} active facets by a hydrothermal conversion method. In comparison with the O′3 Na-birnessite, the P′3 Na-birnessite with a high ratio of {010}/{001} exposed facets provides greatly increased open channels for Na+ diffusion, while the P′3 stacking affords a lower Na+ diffusion barrier, resulting in improved electrode kinetics with a large specific capacity of 176 mAh g–1 at 0.2 A g–1. More importantly, the P′3 Na-birnessite manifests solo Na+ intercalation/deintercalation with extraordinary cycling stability in an aqueous electrolyte, achieving 90.5% capacity retention after 60,000 cycles. When coupled with the NaTi2(PO4)3 anode, the P′3 Na-birnessite-based full cell delivers both high energy density and long cycle life, demonstrating the potential application in aqueous sodium-ion batteries. This study demonstrates an efficient method to prepare high-Na-content P′3 birnessite with tunable exposed facets and provides important insights into developing highly stable layered cathodes for sustainable aqueous sodium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres Wildfires accelerate shrubification in the Alaskan Arctic tundra Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure Engineering Densely Packed Ion-Cluster Electrolytes for Wide-Temperature Lithium–Sulfurized Polyacrylonitrile Batteries Increased Formation of Trions and Charged Biexcitons by Above-Gap Excitation in Single-layer WSe2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1