Lina Teckentrup, Martin G. De Kauwe, Andy J. Pitman, David Wårlind, Anna M. Ukkola, Benjamin Smith
{"title":"解决澳大利亚陆地碳循环对预测气候变化响应中的不确定性问题","authors":"Lina Teckentrup, Martin G. De Kauwe, Andy J. Pitman, David Wårlind, Anna M. Ukkola, Benjamin Smith","doi":"10.1029/2024GL111398","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Semi-arid ecosystems, common across the Australian continent, strongly influence the inter-annual variability and trend in the global terrestrial net carbon sink. Here we explore the future Australian terrestrial carbon cycle using the CMIP6 ensemble, and the dynamic global vegetation model LPJ-GUESS. Uncertainty in Australia's carbon storage in vegetation ranged between 6 and 49 PgC at the end of the century and was strongly linked to biases in the meteorological forcing. Using LPJ-GUESS with bias-corrected meteorological forcing reduced uncertainty in the vegetation carbon storage to between 14 and 20 PgC, with the remaining range linked to model sensitivities to rising atmospheric CO<sub>2</sub> concentration, temperature, and precipitation variability. Reducing this uncertainty will require improved terrestrial biosphere models, but also major improvements in the simulation of regional precipitation by Global Climate Models.</p>\n </section>\n </div>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111398","citationCount":"0","resultStr":"{\"title\":\"Resolving Uncertainty in the Response of Australia's Terrestrial Carbon Cycle to Projected Climate Change\",\"authors\":\"Lina Teckentrup, Martin G. De Kauwe, Andy J. Pitman, David Wårlind, Anna M. Ukkola, Benjamin Smith\",\"doi\":\"10.1029/2024GL111398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Semi-arid ecosystems, common across the Australian continent, strongly influence the inter-annual variability and trend in the global terrestrial net carbon sink. Here we explore the future Australian terrestrial carbon cycle using the CMIP6 ensemble, and the dynamic global vegetation model LPJ-GUESS. Uncertainty in Australia's carbon storage in vegetation ranged between 6 and 49 PgC at the end of the century and was strongly linked to biases in the meteorological forcing. Using LPJ-GUESS with bias-corrected meteorological forcing reduced uncertainty in the vegetation carbon storage to between 14 and 20 PgC, with the remaining range linked to model sensitivities to rising atmospheric CO<sub>2</sub> concentration, temperature, and precipitation variability. Reducing this uncertainty will require improved terrestrial biosphere models, but also major improvements in the simulation of regional precipitation by Global Climate Models.</p>\\n </section>\\n </div>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111398\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111398","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
澳大利亚大陆常见的半干旱生态系统强烈影响着全球陆地净碳汇的年际变化和趋势。在此,我们利用 CMIP6 组合和动态全球植被模型 LPJ-GUESS,探讨了澳大利亚未来的陆地碳循环。本世纪末澳大利亚植被碳储量的不确定性介于 6 到 49 PgC 之间,与气象强迫的偏差密切相关。使用 LPJ-GUESS 和偏差校正气象强迫,可将植被碳储存的不确定性降低到 14 到 20 PgC 之间,其余范围与模型对大气二氧化碳浓度上升、温度和降水变化的敏感性有关。要减少这种不确定性,不仅需要改进陆地生物圈模型,还需要大力改进全球气候模型对区域降水的模拟。
Resolving Uncertainty in the Response of Australia's Terrestrial Carbon Cycle to Projected Climate Change
Semi-arid ecosystems, common across the Australian continent, strongly influence the inter-annual variability and trend in the global terrestrial net carbon sink. Here we explore the future Australian terrestrial carbon cycle using the CMIP6 ensemble, and the dynamic global vegetation model LPJ-GUESS. Uncertainty in Australia's carbon storage in vegetation ranged between 6 and 49 PgC at the end of the century and was strongly linked to biases in the meteorological forcing. Using LPJ-GUESS with bias-corrected meteorological forcing reduced uncertainty in the vegetation carbon storage to between 14 and 20 PgC, with the remaining range linked to model sensitivities to rising atmospheric CO2 concentration, temperature, and precipitation variability. Reducing this uncertainty will require improved terrestrial biosphere models, but also major improvements in the simulation of regional precipitation by Global Climate Models.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.