Terry Deshler, Lars E. Kalnajs, Matthew Norgren, Yunqian Zhu, Jun Zhang
{"title":"洪加-汤加-洪加-哈帕伊火山爆发前后澳大拉西亚极地漩涡气溶胶粒度光谱原位测量结果","authors":"Terry Deshler, Lars E. Kalnajs, Matthew Norgren, Yunqian Zhu, Jun Zhang","doi":"10.1029/2024GL111388","DOIUrl":null,"url":null,"abstract":"<p>Aerosol from the Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruption (20.6°S) in January 2022 were not incorporated into the austral polar vortex until the following year, March 2023. Within the polar vortex in situ profiles of aerosol size spectra were completed in the austral autumns of 2019 and 2023, from McMurdo Station, Antarctica (78˚S), 30 months prior to and 15 months after the HT-HH eruption. The measurements indicate that the HT-HH impact on aerosol size was primarily confined to particles with diameters >0.5 μm leading to differences in aerosol mass, surface area, and extinction from factors of 2–4 at the volcanic layer's peak below 20 km, increasing to ratios of 5–10 above 20 km. Effective radius, with radiative and microphysical implications, increased from ∼0.2 to ∼0.3 μm. An Earth system model with a modal aerosol package compares favorably with the in situ measurements of the HT-HH aerosol impact.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111388","citationCount":"0","resultStr":"{\"title\":\"In Situ Aerosol Size Spectra Measurements in the Austral Polar Vortex Before and After the Hunga Tonga-Hunga Ha'apai Volcanic Eruption\",\"authors\":\"Terry Deshler, Lars E. Kalnajs, Matthew Norgren, Yunqian Zhu, Jun Zhang\",\"doi\":\"10.1029/2024GL111388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerosol from the Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruption (20.6°S) in January 2022 were not incorporated into the austral polar vortex until the following year, March 2023. Within the polar vortex in situ profiles of aerosol size spectra were completed in the austral autumns of 2019 and 2023, from McMurdo Station, Antarctica (78˚S), 30 months prior to and 15 months after the HT-HH eruption. The measurements indicate that the HT-HH impact on aerosol size was primarily confined to particles with diameters >0.5 μm leading to differences in aerosol mass, surface area, and extinction from factors of 2–4 at the volcanic layer's peak below 20 km, increasing to ratios of 5–10 above 20 km. Effective radius, with radiative and microphysical implications, increased from ∼0.2 to ∼0.3 μm. An Earth system model with a modal aerosol package compares favorably with the in situ measurements of the HT-HH aerosol impact.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111388\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111388\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111388","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Aerosol Size Spectra Measurements in the Austral Polar Vortex Before and After the Hunga Tonga-Hunga Ha'apai Volcanic Eruption
Aerosol from the Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruption (20.6°S) in January 2022 were not incorporated into the austral polar vortex until the following year, March 2023. Within the polar vortex in situ profiles of aerosol size spectra were completed in the austral autumns of 2019 and 2023, from McMurdo Station, Antarctica (78˚S), 30 months prior to and 15 months after the HT-HH eruption. The measurements indicate that the HT-HH impact on aerosol size was primarily confined to particles with diameters >0.5 μm leading to differences in aerosol mass, surface area, and extinction from factors of 2–4 at the volcanic layer's peak below 20 km, increasing to ratios of 5–10 above 20 km. Effective radius, with radiative and microphysical implications, increased from ∼0.2 to ∼0.3 μm. An Earth system model with a modal aerosol package compares favorably with the in situ measurements of the HT-HH aerosol impact.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.