通过在独立的掺杂 N 的碳纳米纤维中封装中空镍硒/硒化纳米立方体实现柔性钾离子电池

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-11-14 DOI:10.1016/j.ensm.2024.103908
Bo Yan, Yilong Yu, Hao Sun, Xueping Liu, Yahao Li, Lulu Zhang, Xuelin Yang, Shengkui Zhong, Renheng Wang
{"title":"通过在独立的掺杂 N 的碳纳米纤维中封装中空镍硒/硒化纳米立方体实现柔性钾离子电池","authors":"Bo Yan, Yilong Yu, Hao Sun, Xueping Liu, Yahao Li, Lulu Zhang, Xuelin Yang, Shengkui Zhong, Renheng Wang","doi":"10.1016/j.ensm.2024.103908","DOIUrl":null,"url":null,"abstract":"Self-supporting electrode materials are instrumental in accelerating the development of flexible potassium-ion batteries (PIBs). However, the challenge lies in designing self-supporting materials with sophisticated structures and compositions to overcome the sluggish kinetics and volume effect caused by the large size of potassium ions during K-storage. In this work, we present novel flexible anodes synthesized by confining hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibers (H-NiSe/SnSe@NC). Leveraging its unique organization and composition, the H-NiSe/SnSe@NC anode exhibits impressive initial Coulombic efficiency, excellent rate capability, and exceptional cyclability, even at high mass loadings, outperforming most reported PIBs anodes. Utilizing in-situ XRD and ex-situ TEM techniques, we elucidate the mechanism responsible for its high capacity and gain insights into the K-storage behavior and reaction kinetics through diverse electrochemical measurements. First-principles calculations further clarify the underlying mechanism by which the designed heterostructured anode enhances the adsorption/diffusion of K-ions. Additionally, we integrate this novel anode into full cells, achieving high energy density and extended cycling life. Remarkably, the pouch cell we fabricated delivers high reversible capacity and cyclability even under periodic bending conditions, highlighting its superiority for flexible devices. This research showcases the significance of designing and fabricating advanced self-supporting electrodes for flexible PIBs applications.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Potassium-Ion Batteries Enabled by Encapsulating Hollow NiSe/SnSe Nanocubes within Freestanding N-doped Carbon Nanofibers\",\"authors\":\"Bo Yan, Yilong Yu, Hao Sun, Xueping Liu, Yahao Li, Lulu Zhang, Xuelin Yang, Shengkui Zhong, Renheng Wang\",\"doi\":\"10.1016/j.ensm.2024.103908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supporting electrode materials are instrumental in accelerating the development of flexible potassium-ion batteries (PIBs). However, the challenge lies in designing self-supporting materials with sophisticated structures and compositions to overcome the sluggish kinetics and volume effect caused by the large size of potassium ions during K-storage. In this work, we present novel flexible anodes synthesized by confining hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibers (H-NiSe/SnSe@NC). Leveraging its unique organization and composition, the H-NiSe/SnSe@NC anode exhibits impressive initial Coulombic efficiency, excellent rate capability, and exceptional cyclability, even at high mass loadings, outperforming most reported PIBs anodes. Utilizing in-situ XRD and ex-situ TEM techniques, we elucidate the mechanism responsible for its high capacity and gain insights into the K-storage behavior and reaction kinetics through diverse electrochemical measurements. First-principles calculations further clarify the underlying mechanism by which the designed heterostructured anode enhances the adsorption/diffusion of K-ions. Additionally, we integrate this novel anode into full cells, achieving high energy density and extended cycling life. Remarkably, the pouch cell we fabricated delivers high reversible capacity and cyclability even under periodic bending conditions, highlighting its superiority for flexible devices. This research showcases the significance of designing and fabricating advanced self-supporting electrodes for flexible PIBs applications.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103908\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103908","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自支撑电极材料有助于加速柔性钾离子电池(PIB)的开发。然而,如何设计具有复杂结构和成分的自支撑材料,以克服钾离子储存过程中因钾离子尺寸过大而导致的动力学迟缓和体积效应,是一项挑战。在这项工作中,我们介绍了通过将空心镍硒/硒纳米立方体限制在掺氮碳纳米纤维(H-NiSe/SnSe@NC)内合成的新型柔性阳极。利用其独特的组织和成分,H-NiSe/SnSe@NC 阳极即使在高负载情况下也能表现出令人印象深刻的初始库仑效率、出色的速率能力和卓越的循环性,优于大多数已报道的 PIBs 阳极。利用原位 XRD 和原位 TEM 技术,我们阐明了造成其高容量的机理,并通过各种电化学测量深入了解了 K 存储行为和反应动力学。第一性原理计算进一步阐明了所设计的异质结构阳极增强 K 离子吸附/扩散的基本机制。此外,我们还将这种新型阳极集成到全电池中,实现了高能量密度并延长了循环寿命。值得注意的是,即使在周期性弯曲条件下,我们制造的袋式电池也能提供高可逆容量和循环能力,突出了其在柔性设备方面的优越性。这项研究展示了为柔性 PIB 应用设计和制造先进自支撑电极的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Potassium-Ion Batteries Enabled by Encapsulating Hollow NiSe/SnSe Nanocubes within Freestanding N-doped Carbon Nanofibers
Self-supporting electrode materials are instrumental in accelerating the development of flexible potassium-ion batteries (PIBs). However, the challenge lies in designing self-supporting materials with sophisticated structures and compositions to overcome the sluggish kinetics and volume effect caused by the large size of potassium ions during K-storage. In this work, we present novel flexible anodes synthesized by confining hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibers (H-NiSe/SnSe@NC). Leveraging its unique organization and composition, the H-NiSe/SnSe@NC anode exhibits impressive initial Coulombic efficiency, excellent rate capability, and exceptional cyclability, even at high mass loadings, outperforming most reported PIBs anodes. Utilizing in-situ XRD and ex-situ TEM techniques, we elucidate the mechanism responsible for its high capacity and gain insights into the K-storage behavior and reaction kinetics through diverse electrochemical measurements. First-principles calculations further clarify the underlying mechanism by which the designed heterostructured anode enhances the adsorption/diffusion of K-ions. Additionally, we integrate this novel anode into full cells, achieving high energy density and extended cycling life. Remarkably, the pouch cell we fabricated delivers high reversible capacity and cyclability even under periodic bending conditions, highlighting its superiority for flexible devices. This research showcases the significance of designing and fabricating advanced self-supporting electrodes for flexible PIBs applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Rectifying solid electrolyte interphase structure for stable multi-dimensional silicon anodes MXene-based Micro-Supercapacitors Powered Integrated Sensing System: Progress and Prospects Flexible Potassium-Ion Batteries Enabled by Encapsulating Hollow NiSe/SnSe Nanocubes within Freestanding N-doped Carbon Nanofibers Microsized alloying particles with engineered eutectic phase boundaries enable fast charging and durable sodium storage High Areal Capacity and Long-life Sn Anode Enabled by Tuning Electrolyte Solvation Chemistry and Interfacial Adsorbed Molecular Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1