探索具有 pi-i-n 结构的 Perovskite 太阳能电池的潜力和障碍

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-14 DOI:10.1021/acsnano.4c11866
Chunlei Zhang, Zexin Yu, Bo Li, Xintong Li, Danpeng Gao, Xin Wu, Zonglong Zhu
{"title":"探索具有 pi-i-n 结构的 Perovskite 太阳能电池的潜力和障碍","authors":"Chunlei Zhang, Zexin Yu, Bo Li, Xintong Li, Danpeng Gao, Xin Wu, Zonglong Zhu","doi":"10.1021/acsnano.4c11866","DOIUrl":null,"url":null,"abstract":"The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure\",\"authors\":\"Chunlei Zhang, Zexin Yu, Bo Li, Xintong Li, Danpeng Gao, Xin Wu, Zonglong Zhu\",\"doi\":\"10.1021/acsnano.4c11866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c11866\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11866","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在性能和串联太阳能电池集成适用性方面取得重大进展的推动下,过氧化物太阳能电池(PSC)中的 pi-n 结构正迅速从替代概念过渡到过氧化物光伏技术的最前沿。在不懈追求提高效率和了解导致不稳定的因素的过程中,我们制定了显著的战略来提高 pi-n PSC 的性能。其中最主要的是钝化技术的进步,包括自组装单层 (SAM) 的应用,这已被证明是缓解与界面相关的低效率的核心。本视角精选了近期对 pi-n PSCs 有重大影响的研究,重点关注最新的材料开发、器件结构改进和性能优化策略。我们特别强调了在钝化和界面工程方面取得的进展。此外,我们还探讨了 pi-n 结构过氧化物串联太阳能电池的进展和潜力。视角》最后讨论了 pi-n PSCs 所面临的长期挑战,如长期稳定性、可扩展性和对环境无害解决方案的追求,为未来的研究方向奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure
The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure Engineering Densely Packed Ion-Cluster Electrolytes for Wide-Temperature Lithium–Sulfurized Polyacrylonitrile Batteries Increased Formation of Trions and Charged Biexcitons by Above-Gap Excitation in Single-layer WSe2 Light-Triggered Droplet Gating Strategy Based on Janus Membrane Fabricated by Femtosecond Laser P-d Correlation-Determined Charge Order Stiffness and Corresponding Quantum Melting in Monolayer 1T-TiSe2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1