{"title":"dsRNAPredictor-II:基于序列长度分布的dsRNA及其沉默效率的改进型预测器。","authors":"Liping Xu, Jia Zheng, Yetong Zhou, Cangzhi Jia","doi":"10.1016/j.ymeth.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency. In this study, we optimized an existing model, namely, dsRNAPredictor, by designing sub-models based on different sequence lengths. Accordingly, the data were divided into two groups: 130–399 bp and 400–616 bp long sequences. Then, one-hot encoding was employed to extract sequence information. The convolutional neural network framework comprising three convolutional layers, three average pooling layers, a flattened layer, and three dense layers was employed as the classifier. By adjusting the parameters, we established two sub-models for different sequence distributions. Using multiple independent test datasets and conducting hypothesis testing, we demonstrated that our model exhibits superior performance and strong robustness to dsRNAPredictor, respectively. Therefore, our model may help design dsRNAs with pre-screening potential and facilitate further research and applications.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"232 ","pages":"Pages 129-138"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dsRNAPredictor-II: An improved predictor of identifying dsRNA and its silencing efficiency for Tribolium castaneum based on sequence length distribution\",\"authors\":\"Liping Xu, Jia Zheng, Yetong Zhou, Cangzhi Jia\",\"doi\":\"10.1016/j.ymeth.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency. In this study, we optimized an existing model, namely, dsRNAPredictor, by designing sub-models based on different sequence lengths. Accordingly, the data were divided into two groups: 130–399 bp and 400–616 bp long sequences. Then, one-hot encoding was employed to extract sequence information. The convolutional neural network framework comprising three convolutional layers, three average pooling layers, a flattened layer, and three dense layers was employed as the classifier. By adjusting the parameters, we established two sub-models for different sequence distributions. Using multiple independent test datasets and conducting hypothesis testing, we demonstrated that our model exhibits superior performance and strong robustness to dsRNAPredictor, respectively. Therefore, our model may help design dsRNAs with pre-screening potential and facilitate further research and applications.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"232 \",\"pages\":\"Pages 129-138\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324002445\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002445","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
RNA 干扰(RNAi)已被广泛用于研究基因功能,在控制害虫方面具有巨大潜力。然而,近年来的研究发现,目标昆虫种类、dsRNA分子长度、目标基因等实验因素都会影响RNAi介导控制的效率,制约了该技术的进一步发展和应用。因此,本研究旨在利用生物信息学建立一个深度学习模型,帮助研究人员识别RNAi效率最高的dsRNA片段。在本研究中,我们根据不同的序列长度设计了子模型,从而优化了现有模型,即dsRNAPredictor。因此,数据被分为两组:130-399 bp 和 400-616 bp 长序列。然后,采用单次编码提取序列信息。分类器采用了由三个卷积层、三个平均池化层、一个扁平层和三个密集层组成的卷积神经网络框架。通过调整参数,我们针对不同的序列分布建立了两个子模型。通过使用多个独立测试数据集并进行假设检验,我们证明了我们的模型分别比dsRNAPredictor表现出更优越的性能和更强的鲁棒性。因此,我们的模型可以帮助设计具有预筛选潜力的 dsRNA,促进进一步的研究和应用。
dsRNAPredictor-II: An improved predictor of identifying dsRNA and its silencing efficiency for Tribolium castaneum based on sequence length distribution
RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency. In this study, we optimized an existing model, namely, dsRNAPredictor, by designing sub-models based on different sequence lengths. Accordingly, the data were divided into two groups: 130–399 bp and 400–616 bp long sequences. Then, one-hot encoding was employed to extract sequence information. The convolutional neural network framework comprising three convolutional layers, three average pooling layers, a flattened layer, and three dense layers was employed as the classifier. By adjusting the parameters, we established two sub-models for different sequence distributions. Using multiple independent test datasets and conducting hypothesis testing, we demonstrated that our model exhibits superior performance and strong robustness to dsRNAPredictor, respectively. Therefore, our model may help design dsRNAs with pre-screening potential and facilitate further research and applications.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.